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1.0 INTRODUCTION

The purpose of this report is to document the functional requirements and detailed

specifications for the Inter-Computer Communication Services (ICCS) of the Advanced

Information Processing System (AIPS). This introductory section is provided to outline the

overall architecture and functional requirements of the AIPS system and to present a overview

of the Inter-Computer Communication Services. Section 1.1 gives an overview of the AIPS

architecture as well as a brief description of the AIPS inter-computer network architecture;

Section 1.2 provides an introduction to the AIPS system software; Section 1.3 provides the

guarantees of the Inter-Computer Communication Services; and Section 1.4 describes the

Inter-Computer Communication Services as a seven layered International Standards

Organization (ISO) model. Sections 2 through 6 describe the Inter-Computer Communication

Services functional requirements, functional design and detailed specifications. Each of these

sections describes one of the 'Layers' of the Inter-Computer Communication Services.

Section 7 concludes with a summary of results and suggestions for future work in this area.

1.1 AIPS Architecture

The Advanced Information Processing System is designed to provide a fault- and damage-

tolerant data processing architecture which can serve as the core avionics system for many of

the aerospace vehicles being researched and developed by NASA. These vehicles include

manned and unmanned space vehicles and platforms, deep space probes, commercial

transports, and tactical military aircraft.

AIPS is a multicomputer architecture composed of hardware and software 'building blocks'

that can be configured to meet a broad range of application requirements. The hardware

building blocks are fault-tolerant, general purpose computers (GPCs), fault- and damage-

tolerant inter-computer (IC) and input/output (I/O) networks, and interfaces between the

networks and the general purpose computers. The software building blocks are the major

software functions: local system services, input/output system services, inter-computer

communication services, and the system manager. This software provides the services

necessary in a traditional real-time computer, such as task scheduling and dispatching, and

communication with sensors and actuators. The software also supplies the redundancy

management services necessary in a redundant computer and the services necessary in a

distributed system such as inter-function communication across processing simms,management

of distributed redundancy, management of networks, and migration of functions between

processing sites.

The AIPS hardware consists of a number of computers which may be physically dispersed

throughout a vehicle. These dispersed computers are linked together by a reliable, damage-

tolerant data communication pathway called the IC network, or IC bus. (Since the hardware

implementation is a circuit-switched network which appears to the communication software

and the receiving and transmitting devices as a conventional bus, the terms 'network' and

1-1



'bus' are used interchangeably throughout this document.) A computer at any particular

processing site may also have access to varying numbers and types of I/O buses, which axe

separate from the IC bus. The I/O buses may be global, regional or local in nature. I/O

devices on the global I/O bus are available to all, or at least a majority, of the AIPS computers.

Regional buses connect I/O devices in a given region to the processing sites located in their

vicinity. Local buses connect a computer to the I/O devices dedicated to that computer.

Additionally, I/O devices may be connected directly to the internal bus of a processor and

accessed as though the I/O devices reside in the computer memory (memory mapped I/O).

Both the I/O buses and the IC bus are time-division multiple-access contention buses. Figure

1-1 shows the laboratory engineering model for a distributed AtPS configuration. This

distributed AIPS configuration includes all the hardware and software building blocks

mentioned earlier and was conceived and built to demonstrate the feasibility of the AIPS

atchitectu_.

The laboratory configuration of the distributed AIPS system shown in Figure 1-1 consists of

four processing sites: three of the GPCs are triplex FTPs, while the fourth GPC is a simplex.

Processing site 4 with its 15 node I/O network forms the centralized AIPS configuration,

which is a subset of the distributed AIPS configuration. The interfaces between the GPCs and

the IC network, shown in Figure 1-1, are called Inter-Computer Interface Sequencers (IClS).
The interfaces between the FTP and the I/O network are called Input/Output Sequencers

(IOS). The redundant FTPs are built such that they can be physically dispersed for damage

tolerance; each of the redundant channels of a FTP can be as far as 5 meters from other

channels of the same FTP.

The GPCs communicate with each other over the Inter-Computer Network, in which the

circuit-switching nodes have been configured into redundant virtual buses. Each redundant

bus is referred to as a layer (not to be confused with the ISO layers); these layers are totally

independent and are not cross-strapped to each other. Each layer contains a circuit-switched

node for each processing site; thus every processing site is serviced by three nodes of the IC

network. GPCs are designed to receive data on all three layers, but the capability of a GPC to

transmit on the network depends on the GPC redundancy level. Triplex FTPs can transmit on

all three layers, duplex FTPs on only two of the three layers, and simplex processors on only

a single layer. In duplex and triplex FTPs, a given processor can transmit on only one

network layer. Thus malicious behavior of a processor can disrupt only one layer.

The IC network and the interfaces into the network are designed in strict accordance with

fault-tolerant systems theory. An arbitrary random hardware fauk, including Byzantine faults,

anywhere in the system can not disrupt communication between triplex FTPs. In other

words, the triplex IC network, in conjunction with the ICIS, provides error-masking

capability for communication between two triplex computers. The IC network architecture is

described in more detail in the following subsection.

1-2
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I.I.I AIPS Inter-Computer Network Overview

Communication among the distributed computers of the Advanced Information Processing

System on the IC network is enabled by circuit switched nodes. These nodes are identical to

those used on the I/O network for communication between processors and sensors and

actuators. Each node has five identical ports and can interface with other nodes, GPCs and

I/O subscribers (displays, etc.) through these ports. A detailed specification of the CSDL

node is contained in Appendix A.

The IC network for the distributed AIPS engineering model configuration consists of three

layers of a circuit switched network. Each layer consists of five nodes: one node for each of

the four sites and one spare node.

The three layers of the IC network are totally independent and are not cross-swapped to each

other. The initial no-fault configurations of the three layers are identical. However, after a

link failure in one layer the virtual bus configuration of that layer would change as the network

is reconfigured around the failed link. The other two layers do not have to be reconfigured to

make their virtual bus path identical to the third one.

The fault detection, isolation, and reconfiguration of the IC network is the responsibility of the

IC Network Manager. Nodes keep track of any transmission errors which are protocol related

and inform the Manager of these errors when queried by the Manager. These error data can be

analyzed by the Network Manager to determine the source of transient faults on the network.

The nodes also respond to status queries with the status of the node and the ports. Other than

these functions, the nodes are totally passive circuit switching devices. The common control

circuits in a node monitor messages coming in on all five ports whether that port is enabled or

not. This procedure is necessary for the initial growth of the network. It is also necessary to

monitor all ports so that the Network Manager can respond to certain kinds of failures where

the established paths have been disrupted by a malicious failure. The controller decodes the

message to determine if it is a valid message and if it is intended for that node. If the message

is valid and intended for the particular node, the node responds to the message. Messages

sent to nodes include requests for status and reconfiguration commands. The Network

Manager requests status as an input to its network monitoring task. The reconfiguration

messages establish or change the port enable status. Reconfiguration commands must be

preceded by an encoded node address. Nodes do not respond to messages which are not

preceded by valid addresses. This validity test is done in order to prevent a GPC with random

hardware failure from reconfiguring the network. The reconfiguration commands are

addressed to individual nodes although they are heard by all nodes.

1.2 AIPS System Software

The AIPS system software, as well as the hardware, has been designed to provide a virtual

machine architecture that hides hardware redundancy, hardware faults, multiplicity of
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resources, and distributed system characteristics from the applications programmer. Section

1.2.1 discusses the approach used for the AIPS system software design. Section 1.2.2 is a

high level description of the system services that are provided for AIPS users.

1.2.1 AIPS Software Design Approach

The approach used to design the AIPS system software is part of the overall AIPS system

design methodology. An abbreviated form of this system design methodology is shown in

Figure 1-2. This methodology began with the application requirements and eventually led to a

set of architectural specifications. The architecture was then partitioned into hardware and

software functional requirements. This report documents the design approach used for Inter-

Computer Communication Services software and the ICIS hardware, beginning with the

functional requirements and proceeding through detailed specifications.

Hardware and software for the AIPS architecture is being designed and implemented in two

phases. The tin'st phase was the centralized AIPS configuration. The centralized AIPS

architecture, as shown in Figure 1-3, consists of one triplex Fault Tolerant Processor (FTP),

an Input/Output network and the interfaces between the FTP and the network, the IOSes. The

laboratory demonstration of the Input/Output network consists of 15 circuit-switched nodes

which can be configured as multiple local I/O networks connected to the triplex GPC. The

second phase is the distributed AIPS configuration, which was explained earlier and shown in

Figure 1-1.

1.2.2 AIPS System Software Overview

As shown in Figure 1-4, AIPS system software provides the following AIPS System

Services: local system services, I/O system services, inter-computer communication services,

and system management. The system software is being developed in Ada. System services

are modular and partitioned naturally according to hardware building blocks. The distributed

AIPS configuration will include all the services. (At this time, all the system services with the

exception of system management have been completed.) Versions of the system software for

specific applications can be created by deleting unused services from this superset. The

System Manager functions may reside on only one triplex FTP or may be distributed among

several triplex FTPs. The other system services are replicated in each GPC. A brief

description of each of the services follows.

1.2.2.1 Local System Services

The local system services provided in each GPC are GPC initialization, real-time operating

system, local resource allocation, local GPC Fault Detection, Isolation, and Reconfiguration

(FDIR), GPC status reporting, and local time management (see Figure 1-5).
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The function of GPC initialization is to bring the GPC to a known and operational state from

an unknown condition (cold start). GPC initialization synchronizes the Computational

Processors (CPs), synchronizes the Input/Output Processors (IOPs) and resets or initializes

the GPC hardware and interfaces (interval timers, real time clock, interface sequencers,

DUART, etc.). It makes the hardware state of the redundant channels congruent by alignment

of memory and control registers. It then activates the system baseline software that is

conmmn to every GPC.

The AIPS real-time operating system supports task execution management, including

scheduling according to priority, time and event occurrence, and is responsible for task

dispatching, suspension and termination. It also supports memory management, software

exception handling, and intertask communication between companion processors (IOP and

CP). The AIPS operating system resides on every CP and IOP in the system. It uses the

vendor-supplied Ada Run Time System (RTS), and includes additional features required for

the AIPS real-time distributed operating system.

The GPC resource allocator coordinates and manages any global or migratable functions that

are assigned to the GPC.

The GPC status reporter collects status information from the local functions, the local GPC

FDIR, the IC system services and the I/O system services. It updates its local data base and

disseminates this status information to the system manager.
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GPC FDIR has the responsibility for detecting and isolating hardware faults in the CPs, IOPs,

and shared hardware. It is responsible for synchronizing both groups of processors in the

redundant channels of the FTP and for disabling outputs of failed channel(s) through

interlock hardware. After synchronization, all CPs will bc executing the same machine

language instruction within a bounded skew, and all IOPs will be executing the same machine

language instruction within a bounded skew. GPC FDIR logs all faults and reports status to

the GPC status reporter. It is responsible for the CPU hardware exception handling, for

transient hardware fault detection, and for running low priority self tests to detect latent faults.

This redundancy management function is transparent to the application programmer.

The local time manager works in cooperation with the system time manager to initialize the

local real time and to keep it consistent with the universal time. It is also responsible for

providing time services to all users.

A detailed description of Local System Services is provided in [1].

1.2.2.2 I/O System Services

The I/O system services provide efficient and reliable communication between the user and

external devices (sensors and actuators). The I/O system services software is also responsible
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for the fault detection, isolation and reconfiguration of the I/O network hardware and the

IOSes.

I/O system services is made up of three functional modules: I/O user interface, I/O

communication management and the I/O network manager (Figure 1-6).

The I/O User Interface provides a user with read/write access to I/O devices or Device

Interface Units (DIUs), such that the devices appear to be memory mapped. It also gives the

user the ability to group I/O transactions into chains and I/O requests, and to schedule I/O

requests either as periodic tasks or on demand tasks. A detailed description of the I/O user

interface is provided in [2].

The I/O Communication Manager provides the functions necessary to control the flow of data

between a GPC and the various I/O networks used by the GPC. It also performs source

congruency and error detection on inputs, votes all outputs, and reports communication errors

to the I/O Network Manager. Additionally, it is responsible for the management of the I/O

request queues. A detailed description of the I/O communication manager is provided in [2].

The I/O Network Manager isresponsiblefor detectingand isolatinghardware faultsin I/O

nodes, links,and interfacesand for reconfiguringthe network around any failedelements.

The network manager function is transparentto allapplicationusers of the network. A

detaileddescriptionof theI/O Network Manager isprovided in[3].

1.2.2.3 Inter-Computer Communication Services

The Inter-Computer Communication Services provide two functions: (1) inter-computer user

communication services, that is, communication between functions not located in the same

GPC, and (2) inter-computer network management (Figure 1-7).

The characteristics of the Inter-Computer Communication Services are described in Section

1.3. The ICCS has been designed and implemented according to the ISO model [4]. This

model and the mapping of ICCS functions to the model are described in Section 1.4. Sections

2 through 6 describe the ICCS functional requirements, functional design and detailed

specifcations. Each of these sections describes one of layers of the Inter-Computer

Communication Services.

The IC user communication service provides local and distributed inter-function

communication which is transparent to the application user. It provides synchronous and

asynchronous communication, performs error detection and source congruency on inputs, and

records and reports IC communication errors to IC network managers. Inter-Computer

communication can be done in either point to point or broadcast mode and executes in each

GPC.
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The IC Network Manager is responsible for the fault detection, isolation and reconfiguration

of the IC network. The AIPS distributed configuration consists of three identical, independent

IC network layers which operate in parallel to dynamically mask faults in a single layer and

provide reliable communication. The IC Network Manager is composed of three IC Layer

Managers. There is one Layer Manager for each network layer. However, the three Layer

Managers do not need to reside in the same GPC. They are responsible for detecting and

isolating hardware faults in IC nodes and links and for reconfiguring their respective network

layer around any failed elements. The Network Manager function is transparent to all

application users of the network. -

1.2.2.4 System Manager

The system manager is a collection of system level services including the applications monitor,

the system resource manager, system fault detection, isolation and reconfiguration (FDIR),

and the system time manager (Figure 1-8).

The applications monitor interfaces with the applications programs and the AIPS system

operator. It accepts commands to migrate functions from one GPC to another, to display

system status, to change the state of the system by requesting a hardware element state

change, and to convey requests for desired hardware and software configurations to the

system resource manager.

The system resource manager allocates migratable functions to GPCs. This involves the

monitoring of the various triggers for function migration such as failure or repair of hardware

components, mission phase or workload change, operator or crew requests and timed events.

It reallocates functions in response to any of these events. It also designates managers for

shared resources and sets up the task location data base in each GPC.

The system FDIR is responsible for the collection of status from the IC Network Layer

Managers, the I/O Network Managers, and the local GPC redundancy managers. It resolves

conflicting local fault isolation decisions, isolates unresolved faults, correlates ti'ansient faults,

and handles processing site failures.

The system time manager, in conjunction with the local time manager on each GPC, has the

job of maintaining a consistent time across all GPCs. The system time manager indicates to

the local time manager when to set its value of time. It also sends a periodic signal to enable

the local time manager to adjust its time to maintain consistency with an external time source

such as the GPS Satellites or an internal source such as the real time clock in the GPC which

hosts the system time manager software.
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1.3 Inter-Computer Communication Services Characteristics

The Inter-Computer Communication Services possess a number of characteristics that make it

much easier for the applications programmer to use these services. These characteristics also

off-load the applications programmer as well as the systems programmer from the tasks of

building reliable message delivery system on top of an unreliable communications medium and

ordering and timing of delivery of messages. The following is a list of terms and definitions

that are used in the subsequent discussion.

1. An FTP is 'on-line' if the majority of its channels are non-faulty.

2. A simplex is 'on-line' if it is non-faulty and its transmittal layer is non-faulty.

3. The 'some' site is the transmitting site.

4. The 'sink' site(s) is the recipient site(s).

5. The sink sites of a broadcast are all of the on-line sites except for the source site.

6. The IC Network is 'on-line' if the majority of its layers are non-faulty.

7. A fault in this context is a random hardware fault or an operational fault that affects

only a single fault containment region.

There are two types of communication supported by the ICCS, the IC Network, and ICISes:

point-to-point communication and broadcast communication. The characteristics of both types

of communication are the following.
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In a fully operational state all triplex FTPs can communicate with each other,

even in the presence of an arbitrary malicious fault.

The following are the characteristics of AIPS for point to point (site to site) communication.

1. Messages sent by an on.line source site are correctly delivered to the
on-line sink site.

2. An on-line sink site receives messages in the order sent by the on-line
source site.

3. A task residing on an on-line sink site receives messages in the order
sent by tasks residing on one other on-line source site.

Figure 1-9 is a diagram of message flow for point to point communication. In the diagram,

Task A residing on FTP 2 sends two message to Task B residing on FTP 4. All four sites are

'on-line.' Message X is sent first and message Y is sent second. The messages are received

by Task B in the order they have been sent.

The following are the AIPS characteristics for broadcast or site to sites communication.

1. Broadcasts sent by an on-line source site are correctly delivered to all
other on-line sites.

2. On-line sink sites receive messages in the order sent
broadcasting sites.

3. On-line sink sites receive broadcast messages in identical order.

by the

4. A task residing on an on-line sink site receives messages in the order
sent by tasks residing on the on-line source sites.

F'rP 2 Point to Point Communication

y,x _. I

::_ii_i_ii_ Simplex 1

x,y li

Figure 1-9. Point To Point Communication Message Flow
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Figure 1-10 is a diagram of message flow for broadcast communication. In the diagram, Task

A residing on FTP 4 sources the first two broadcast messages, B1 and B2. The recipient is

Task B, residing on all other sites. Another task, Task C (not shown on the diagram),

residing on FFP 3 then broadcasts the B3 message to a different recipient task, Task D (not

shown on the diagram), on all other sites. All four sites are 'on-line.' Task B on sites 1, 2,

and 3 receives the first two message in the order sent. Task D on sites 1, 2, and 4 then

receive message B3.

1.4 Inter-Computer Communication Services ISO Model

The ICCS was designed and implemented in a manner which is consistent with the ISO

model. This model is the standard for communication between data processing machines.

The architectural framework for the ISO is a hierarchical series of seven functional levels or

layers [4]. Different layers relate to different types of functions and services. Figure 1-11 is a

diagram of the relationship between the ISO layers and the hardware or software tasks of the

ICCS.

At the lowest level are the Physical Layer and the Data Link Layer. The Physical Layer is

concerned with the electrical connection between the data machine and the communication

circuit. The Data Link Layer is concerned with how blocks of data are sent over the physical

link. These two layers are provided by the ICIS hardware. Section 6 is a detailed description

of the functional requirements and design of the ICIS.

FTP 2 Broadcast Communication
iii::iiiii_.... :_iii::i::iii::i_iii::i:_iii::i:_iiiii:_i::i::i:_i_iii::iii::i:_i::iii::i::iii::i_::%iiiiiiiiiiiiiiiiiiiiiiii_;iiii:_i:_i:_i:_i:_i:_i:_iii:_i:_iii:_iii_........ FTP 3

 -rP4 il

Figure 1-10. Broadcast Communication Message Flow

The next level is the Network Layer, which is concerned with setting up a virtual circuit

spanning one or more physical links. This layer is provided by the IC Network Manager

Task, which is responsible for the initial growth of the IC Network and the fault detection,

identification and reconfiguration of the redundant links and nodes of the network. Section 5
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is a detailed description of the functional requirements and software specifications of the IC

Network Manager. These lower three ISO layers represent a common network which many

machines might share independently of one another.

The next layer, the Transport Layer is concerned with reliable end-to-end control of the

transmission between two user processes. The functions of this layer are provided by the

Message Send Receive Task, the ICIS Redundancy Management Task and the User Services.

The Message Send Receive Task is responsible for providing transmit and receive functions in

either point to point or broadcast mode. The ICIS Redundancy Management Task is

responsible for providing redundant processors with a congruent representation of received

data and for detecting and isolating ICIS faults. The User Services provide a standard

interface to the user. Section 4 is a detailed description of the functional requirements and

software specifications of the Transport Layer.

Above the Transport Layer is the Session Layer, whose function is to begin a session between

two users, maintain a dialogue according to an established protocol, and then terminate the

session. This function is provided by the Synchronous Communication Manager.

(Applications could also write their own Session Layer functions). Section 3 is a detailed

description of the functional requirements and software specifications of the Synchronous

Communication Manager.

A brief description of the highest layers, the Presentation and the Process Layers, is provided

in the following Section. These layers are responsible for the manipulation of data that has

been transmitted by the lower layers.
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2.0 THE PRESENTATION AND PROCESS LAYERS

The Presentation Layer and the Process Layer are the two outermost layers of the seven

standard layers that the ISO has defined for distributed processing. These layers are

concerned with the manipulation of data that has been transmitted by the lower layers. The

Inter-Computer Communication Services provided for AIPS do not include any functions

in these two layers, but a brief description is given here for completeness [4].

The Presentation Layer contains functions relating to the character set and data codes which

are used and to the way data is displayed on a screen or printer. For example, when

communication is occurring between devices with different character sets, character

conversion needs to be performed. In order to save transmission costs, it may be desirable

to compact a character stream into a smaller bit stream. For security reasons data

encryption and decryption may be required. In order to have a character stream appear in

an attractive and readable format on a display device or printer, control characters need to

be inserted at appropriate places. Conversely, a user-friendly format may be displayed to

an operator for data entry, but only the entered data is transmitted. These are all functions

appropriately handled by the Presentation Layer.

The Process Layer is concerned with higher level functions which provide support to the

application or system activities, such as operator support, the use of remote data, file

transfer control, or distributed data base activities. When distributed files and data bases

are used, for example, controls are needed to prevent integrity problems or deadlocks.

Some types of controls for this are strongly related to networking, for example the

timestamping of transactions and delivery of transactions in timestamp sequence. Another

example of a process layer function would be control of the pace of certain processes so

that a transmitting machine can send records continuously without flooding the receiving

machine, or so that an application can keep a distant printer going at maximum speed.
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3.0 THE SESSION LAYER

The Session Layer of the ISO Standard Layer Model is responsible for managing

communications between two 'session-entities'. In an Ada context, a 'session-entity' can

be defined as an Ada task. Thus, in an Ada system, the Session Layer manages the

rendezvous between two communicating Ada tasks. These tasks may reside on the same or

different computing sites. If the communicating tasks reside on different sites, they are

said to be distributed. In the AIPS Inter-computer Communications Services (ICCS), the

distributed rendezvous function is performed by the Synchronous Communication Manager

(SCM). Further, the SCM is responsible for accessing distributed global data objects. The

actual location of the distributed tasks or data is transparent to the application.

The SCM also handles any error conditions encountered during task rendezvous or global

data access. These are usually reported back to the application as a system or application-

defined Ada exception.

In addition to the SCM, the Session Layer may contain application-specific communication

protocols for controlling specific task rendezvous (e.g., guard conditions on select

statements, etc.)

This section presents the SCM functional requirements and design for two distributed

processes: task rendezvous and global data access. The SCM has not yet been

implemented on the current AIPS system.

3.1 Synchronous Communication Manager

3.1.1 Functional Requirements

The SCM shall:

1)

2)

3)

provide an interface between the Ada run time system and the User Services to

enable an Ada application to perform a simple rendezvous with parameter

passing between two distributed tasks.

provide an interface between the Ada run time system and the User Services to

enable an Ada application to perform a conditional rendezvous with parameter

passing between two distributed tasks. If the receiving or server task is not

available for rendezvous, the sending or client task shall execute the alternate
action.

provide an interface between the Ada run time system and the User Services to

enable an Ada application to perform a timed rendezvous with parameter

passing between two distributed tasks. If the receiving or server task is not
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available for rendezvous within the specified time interval, the sending or client

task shall execute the alternate action.

4) access distributed global data in a contention protected manner.

5) provide Ada exception handling in a distributed environment.

3.1.2 Functional Design

The following sections present the top level design of the Synchronous Communication

Manager.

3.1.2.1 Distributed Ada Objects

The design of the SCM supports two kinds of distributed Ada objects: tasks and data.

Practically, the actual objects of distribution are packages in which the tasks and data are

declared.

The mechanism for distributing these objects is represented in Figure 3-1. This illustration

shows the address space for a typical computing site or FTP. The physical address space

of the site is a subset of the total logical address space and is the same for all sites. The

load module for each FTP is linked in the logical address space and consists of all local

objects and the entire set of distributed objects (tasks and data). Each distributed object

resides in a unique location within the logical address space. At load time, the physical

address space of each site includes: (1) its local objects, (2) the specifications of all the

distributed tasks, and (3) _ the task bodies and global data packages of those locally

resident distributed objects. When an FTP is initialized, its local Memory Management

Unit (MMU) is configured to translate the logical address space to the local physical

address space for the locally resident distributed objects. Furthermore, this local MMU is

set up to interrupt the FTP when any non-resident distributed object is accessed. In this

manner, all the distributed objects are visible to each FTP.

3.1.2.2 User Interface

• Ideally, the accessing of distributed objects should be transparent to the user. In order for

this function to be performed in an efficient manner, it requires compiler support. Since

AIPS does not have this support, the user is constrained to access distributed tasks and data

in a specific, non-transparent manner.
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3.1.2.2.1 Tasks

To permit the specification of a distributed task to the AIPS

specification of a distributed task should be in the following form:

package TaskPackage is

system, the package

-- Task specification

task type Task_Name_t is

end Task_Name_t;

-- task creation

Task_.Name: Task_Name_t;

-- define ICCS User ID

My_User_D: constant ic_user_id := Task_User_D;

-- Get run time system task ID (address of task control block)

function Get_Task_ID is new LSS_Task_IDsiDOf(Task_Name_O;

Task_Name_ID: LSS_Task_IDs.Task_ID:= Get_Task_ID(Task_Name);

-- Identify distributed task to ICCS

B: boolean := Identify_Task_Location(My_User_ID,

TaskSite,

Task_Processor,

Task_Narne_ID);

--user ID

--task site ID

--CP or IOP

--task ID

end Task_Package;

Refer to Sections 4.1.1 and 4.2.1.3.3 for a description of the Identify_Task_Location

function. The ICCS User ID identifies the task to the IC Communications Service and is

valid throughout all computing sites (see Section 4.2.1.1 and Appendix B for a description

of ICCS User IDs). The Task ID identifies the task to the local run time and is unique to

each site.
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All distributedtaskentrydeclarationsareof theform:

type param_modeis (in, out, inout);

entry entry_name(

no_of_param :

param_l

param 1 size :

param_l_mode :

in integer;,

in system.address;

in integer;,

in param mode;

pararn...n

param n size :

param n mode :

);

where

no__of_param

param_rl

param n size

pararn_n_mode

The parameter no_of_param is required.

to O.
If no parameters are being

in system.address;

in integer;,

in param_mode

number of formal

parameters to be

passed

address of nth

parameter

size of nth parameter

in bytes

mode of nth parameter

passed, it should be set
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3.1.2.2.2 Data

Global data can be accessed using the following procedure:

type access_mode is (read, write);

procedure Global_Access(
mode

object:
objecLsize:
data_addr:

);

in access_mode;

in system.address;
in integer,
in system.address;

4 "

where
mode =

object =

object_size =

data_addr =

type of access (read or write)
address of global object

to be accessed

size of object to be
accessed ('size attribute)
address where data is read to
or written from

3.1.2.3 Site Initialization

Because each site has the task specifications for all distributed tasks, a task control block

(TCB) for each distributed task in the system will be created, at elaboration, on each site.

However, only those TCBs on the site on which the corresponding task bodies reside will

be active. The remaining TCBs will be inactive and merely contain task location

information. The ICGS task location directories (CP_Task_Location, IOP_Task_Location)

will also be created at this time via the call to the Identify_Task_Location function.

No directory is needed for global data. The location of any particular variable is determined

when it is accessed. If the global data resides on a remote FTP, this determination is made

via MMU interrupt (see Section 3.2.2.1).

3.1.2.4 Distributed Task Rendezvous

The top level dataflow of a distributed task rendezvous is presented in Figure 3-2. In such

a scenario, a local client task desires to rendezvous with a server task on a remote site. The

client task makes the required entry call to the Kernel Entry Procedure (Kernel_Entry).

Kernel_Entry checks to see if the desired server task is local or on a remote site. If local,

the normal Ada rendezvous is performed. If remote, Kernel_Entry selects and executes a

rendezvous with an idle (blocked) server surrogate task from the Surrogate Task Pool.

Any formal rendezvous parameters destined for the remote task are passed to the surrogate

task.
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ThesurrogatetaskassemblestheIC rendezvousmessageparametersincludinganydatato
besentto theremotetask(Ada in, inout parametermode).Thismessageis transmittedto
the RendezvousManagerTask (Rndv Mgr) residenton the remote site via the User
Servicesof theTransportLayer. The surrogatetaskis thenblockedwaiting for areturn
messagewhichsignalsthecompletionof therendezvous.

The IC messagearrives at the remote site and is passed to the resident Rendezvous

Manager Task via a message received event. The Rndv_Mgr selects and performs a

rendezvous with an idle client surrogate task from the Surrogate Task Pool. The surrogate

task constructs a normal Ada rendezvous calling sequence from the received IC message

parameters and performs the desired rendezvous with the server task. After the rendezvous

has completed, the surrogate task assembles the IC end-of-rendezvous message parameters

including any parameters to be returned from the server task to the client task (Ada out,

inout parameter mode). This message is then transmitted back to the Rendezvous

Manager Task on the client task's site via the User Services. After the end-of-rendezvous

message is sent, the client surrogate task is returned to the local Surrogate Task Pool

(becomes 'blocked').

Back on the client task's FTP, the IC end-of-rendezvous message is received and the

Rendezvous Manager Task is started via the message received event. The Rendezvous

Manager Task then performs a rendezvous with the blocked server surrogate task. The

surrogate task returns to the client taskvia the run time kernel and passes any formal

rendezvous output parameters received from the server task. The server surrogate task is

subsequently returned to the local Surrogate Task Pool.

Assigning unique surrogate tasks to each rendezvous request allows multiple requests to

proceed concurrently (subject to priority) without requiring each rendezvous to go to

completion before commencing another. Exhaustion of the surrogate task pool on either

site results in an exception being raised in the client task.

3.1.2.5 Distributed Data Access

The top level dataflow of a distributed global data access is presented in Figure 3-3. As in

the distributed task rendezvous process, the design is based on utilizing surrogate tasks

from the Surrogate Task Pool. A local task that wishes to access distributed global data

potentially residing on a remote site calls the Global Object Access Procedure

(Global_Access). A check is made to determine if the desired data object is local or remote.

If local, the access is performed using the resident Local Object Access Procedure

(Local_Access) in Local System Services. If remote, a rendezvous is performed with an

idle local access surrogate task selected from the Surrogate Task Pool. The access

parameters are passed to the surrogate task.
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Figure 3-2. Distributed Task Rendezvous
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The surrogate task assembles the IC access message parameters which includes any data to

be written to the global data object (if write mode). This message is transmitted via the

User Services to the Global Data Manager Task (GlobalData_Mgr) that is resident on the

remote site. The surrogate task is then blocked waiting for a return message which signals

the completion of the access.

The IC message arrives at the remote site and is passed to the resident Global Data Manager

Task via a message received event. GlobalData_Mgr selects and performs a rendezvous

with an idle remote access surrogate task from the Surrogate Task Pool. The surrogate task

accesses the global data item via the resident Local Object Access Procedure

(Local_Access). After access has been completed, the surrogate task assembles the IC end-

of-access message parameters which includes any parameters to be returned to the local

task (if read mode). This message is then transmitted via the User Services to the Global

Data Manager Task on the local site. The remote access surrogate task is subsequently

returned to the local Surrogate Task Pool (becomes 'blocked').

Back on the local task site, the IC end-of-access message is received and the Global Data

Manager Task is started via the message received event. GlobalData_Mgr performs a

rendezvous with the blocked local access surrogate task The surrogate task returns to the

local task along with any global data object value (read mode). The local access surrogate

task is then returned to the local Surrogate Task Pool.

As with the Distributed Task Rendezvous function, the assignment of unique surrogate

tasks to each access request allows multiple requests to proceed concurrently (subject to

priority) without requiring each access to complete before commencing another.

Contention protection is provided by the Local Object Access Procedure resident on the

remote site. Exhaustion of the surrogate task pool on either site results in an exception

being raised on the local site.

3.2 Synchronous Communication Manager: Software Specifications

The Synchronous Communication Manager consists of the following components:

Distributed Rendezvgus

Kernel Entry Procedure

Server Surrogate Task

Client Surrogate Task

Rendezvous Manager

Distributed Access

Global Object Access Procedure

Local Access Surrogate Task

Remote Access Surrogate Task

Global Data Manager Task
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3.2.1 Distributed Rendezvous Process Descriptions

3.2.1.1 Process Name: Kernel Entry Procedure

Inputs:

• server caLling parameters:

server_task_ID

server_entry_R)

server formal rendezvous parameters

entry_type

[client_wakeup_time]

Outputs:

To server surrogate task

• server surrogate start parameters:

server_task_ID

server_entry_ID

server formal rendezvous parameters

entry_type

or

To server task

• server formal rendezvous parameters

This procedure (Figure 3-4) provides the interface between the application task and the run

time kernel for a rendezvous entry call. Three types of Ada rendezvous are supported:

simple, conditional, and timed. Upon entry to the kernel, a check (Test_Remote) is made

to determine if the desired server task is local or remote. This is determined by accessing

the task body start address in the local TCB for the server task. Since all tasks are linked in

the logical address space (see Section 3.1.2.1), the task body start address of a remote task

is not in the local physical address space and causes an MMU interrupt. If the server task

is local, the normal Ada rendezvous kernel routine (ts__caU) is executed.

If the server task is remote, Task_Select selects an idle ('blocked') server surrogate task

from the Surrogate Task Pool and a local rendezvous is made via ts_call. The original

server formal rendezvous parameters are passed to the Start entry of the surrogate task.

Thus, the remote rendezvous of client with server has been changed to a local rendezvous

of client with server surrogate.

The number of server surrogate tasks in the Surrogate Task Pool determines the maximum

number of concurrent remote task rendezvouses permitted. If there are no idle (i.e.,

blocked at the Start entry) server surrogate tasks in the pool, a TASKING exception is

raised in the client task:
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server callin_, oarams:

server_task_ID
server__en_y_ID
server mdv params
[client_wakeup_time]
entry_type

select server surrogate
task from Surrogate Task
Pool

from client task

server calling params:

server_task_ID
server_entry_ID
server mdv params
[client_wakeup time]
entry_type(simple,_onditional, timed)

'V

Remote_Test

test for remote task

or

_erver calling params:

server_task ID

server_entry_ID

server mdv params
[client_w_eup_time]
entrytype

ts call

rendezvous with
locally resident server task
(simple, conditional,timed)

•server surrogate_task_ID
server_surrogate_entry_ID
server _task_ID

server_entry_ID
server rndv params
entry_type

rendezvous with
server surrogate task

server mdv params

to server task

Server surrogate start Darams

server_task_ID
server_entry lD
server mdv paran_
entry_type

to server surrogate task

Figure 3-4. Kernel Entry Procedure

3-12



3.2.1.2 Process Name: Server Surrogate Task

Inputs:

• server surrogate start parameters:

server_task_ID

server_entry_ID

server formal rendezvous parameters

en_'y_tyl_

Stop Entry_

• rndv_status

• [server formal rendezvous out parameters]

Outputs:

To User Services

• IC rendezvous message parameters

To kernel

• rndv_status

• [server rendezvous out parameters]

This task (Figure 3-5) provides the interface between the client task and the User Services

in the Transport Layer. The Start entry receives the server task calling parameters from the

kernel. The IC rendezvous message is constructed and transmitted to the remote site by the

Send Output procedure of User Services (see Section 4.2.1.3.4) utilizing the following

parameters:

• dest_gl_

• dest_task

• msg_size

• msg_prio

• msg_buffer

Destination site identifier obtained from the task location directories

(CP_Task_Location, lOP_Task_Location).

Message destination on remote site (Rendezvous Manager Task).

Size of message data buffer.

Priority of message.

Message data buffer:

msg_ID (= entry_type)

server_surrogate_task_ID

server_user_ID (from task location directories)

server_entry_ID

server formal rendezvous parameters

Since the in, inout server rendezvous parameters are given in terms of local reference

addresses, these are converted to the parameter values for transmission to the remote site.
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After completionof the call to Send_Output, the surrogate task is blocked at the Stop entry

waiting for completion of the rendezvous on the remote site.

The Stop entry receives the rendezvous status indicator (mdv_status) and any server formal

rendezvous out parameters from the Rendezvous Manager Task (Rndv_Mgr). The

rendezvous status indicator tells the kernel whether or not the rendezvous was successfully

completed. The out parameters are passed to the client task via the kernel during normal

completion of the client-surrogate rendezvous. After the rendezvous has completed, the

surrogate task is blocked at the Start entry, effectively returning it to the Surrogate Task

Pool. "

Any exception raised in the server surrogate task is returned to the client task as an Ada

TASKING exception.

from ts_call
_rver surrogate start params
server._task_lD

server_entry_ID
server rndv params

entry_type

Start //accept Start()do /

stop//
t A _, ) acc.eI_t Stop() do /

T / encl :stop; / "

|/ ondS /
/
/ rndv status, mdv status,
" serv mdv serv mdv

'out' params 'out' params

from Rndv_Mgr to client task
via kernel

IC mdv mst, tmrams

dest._gpc (from task location directories)
dest_task (=Rndv_Mgr)

msg_size
msg_prio
msg__buffer :

msg_ID (=entry_type)
server_surrogate_task _ID
server__user_ID
server_entry_ID
server rndv params

end_Output

_ansmit IC
Imsg to server

pskCpC

Figure 3-5. Server Surrogate Task
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3.2.1.3 Process Name: Client Surrogate Task

Inputs:

• client surrogate start parameters:

msg_ID

source_gpc

server_surrogate_task_ID

server__user_.ID

server_entry_ID

server formal rendezvous parameters

From server task

• server formal rendezvous out parameters

Outputs:

To User Services

• IC end-of-rendezvous message parameters

To server task

• server formal rendezvous parameters

This task (Figure 3-6) provides the interface between User Services in the Transport Layer

and the server task in a distributed rendezvous. The Start entry receives the server task

calling parameters, rendezvous type (msg_ID) and client task site ID (source__gpc) from the

Rendezvous Manager Task. The server formal rendezvous parameters are converted to

local address references and a rendezvous is performed with the server task via the local

kernel entry procedure (ts_call). After the rendezvous has completed, the IC end-of-

rendezvous message is constructed and transmitted to the source site by the Send_Output

procedure of User Services utilizing the following parameters:

• dest_gpc

• dest_task

• msg__size

• msg_prio

• msg_buffer

Source site identifier (= source_gpc).

Message destination on source site (Rendezvous Manager Task).

Size of message data buffer.

Priority of message.

Message data buffer:

msg_ID (= end of rndv)

server_surrogate_task_ID

rndv_status

server rendezvous out parameters
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After thecompletionof thecall to Send_Output, the client surrogate task is blocked at the

Start entry, effectively returning it to the Surrogate Task Pool.

Any exception raised in the client surrogate task is returned (via rndv_status) to the client

task at the source site as an Ada TASKING exception.

to server task from server task

Start

.-'d / } cnclacc_"I_tstart;Start0do /

client surrotmte start params:

tmg_lD
sourcc_.gpc
server_surrogate_task ID
scrvcr_uscr._lD

scrvcr_entry_ID
servermdv pararns

from Rndv_Mgr

server mdv

params

server mdv

'out' params

¢rld-of-mdv IC msg t)arams:

dest_.gpc (=source..gpc)
dest_task (=Rndv_Mgr)

msg_.size
msg_.prio
msg_buffer:

V

Send_Output

transmit IC

msg to
client task

gpc

msg_ID (=end_of_mdv)
scrvcr_surrogate_task_ID

mdv_status

scrvcrmdv 'out'params

Figure 3-6. Client Surrogate Task

3-16



3.2.1.4 Process Name: Rendezvous Manager Task

Inputs:

From User Services

• rendezvous message parameters:

msg_ID (= entry_type)

server_surrogate_task_ID

server_user_ID

server entry_K)

server formal rendezvous parameters

source._gpc

or

• end-of-rendezvous message parameters:

msg_ID (= end of rndv)

server_surrogate_task_ID

rndv_status

server formal rendezvous out parameters

Outputs:

To client surrogate task

• client surrogate Start parameters:

msg_ID (= entrytype)

server_surrogate_task_ID

server_user__ID

server_entry_ID

server formal rendezvous parameters

source_.gpc

To server surrogate task

• client surrogate Start parameters:

rndv_status

server formal rendezvous out parameters

Upon receipt of an IC rendezvous or end-of-rendezvous message from a remote site, this

task (Figure 3-7) is initiated by an event signalled by the Message_Send_Rcv task (see

Section 4.2) in the Transport Layer. The message contents are obtained by calling the

Get_Input procedure in User Services (see Section 4.2.1.3.5).

If the message received was a rendezvous message, an idle client surrogate task is selected

from the Surrogate Task Pool and a rendezvous is made with the Start entry of the
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surrogatetask. The servertaskcalling parameters,rendezvoustype,andsourcesiteID are
passedas formal rendezvous parameters.

If the message received was an end-of-rendezvous message, a rendezvous is made with the

Stop entry of the server surrogate task (server_surrogate_task_ID) handling the remote

rendezvous. The rendezvous status indicator and any server formal rendezvous out

parameters are passed as formal rendezvous parameters.

The above Start and Stop rendezvous entries are only for synchronization purposes; no

processing is performed during the rendezvous and control is returned immediately to the

Rendezvous Manager Task. The actual remote rendezvous processing is controlled by the

surrogate tasks, leaving the Rendezvous Manager Task free to concurrently handle any

other remote rendezvous requests.

event

interrupt

from Messag( _Send_Roy

r,amullm)_.,a_

lmg..ID
sottrce._gt)c
server_surro_e_task_ID
selWer_user_lD
server_entry_K)
server mdv params

- /Wait_For..Schedule;

/ case msg._ID /
/¢ when entry_type/

/ whener__o,_rn_¢
/ en  e;

to client to server

surrogate task surrogate task

A

server surrogate
stop p_:

mdv_status
server mdv
'OUt'params

or

msg_.ID (=entry_type)
server_ surrogate _task ID
server_user_ID

server_entry_ID
server mdv params
source.=gpc

end-of-mdv msg nm-ams

msgjD(=(md_of_.mdv)
server_surrogate_task_ID
mdv status
server rndv 'out' params

Get..Input

fetch IC
msg

Figure 3-7. Rendezvous Manager Task
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3.2.2 Distributed Access Process Descriptions

3.2.2.1 Process Name: Global Object Access Procedure

Inputs:

• access parameters:

access_type

object_address

objecLsize

[object_value]

Outputs:

To local access surrogate task

• local access surrogate Start parameters:

access_type

object_address

object_size

[objecLvalue]

object_grx:

To local task

• [objecLvalue]

This procedure (Figure 3-8) allows an application to access a distributed global data object

without knowing its site location. Upon entry, a check (Remote_Test) is made to

determine if the desired data object is local or remote. This is determined by attempting to

access the object. Since all global data packages are linked in the logical address space (see

Section 3.1.2.1), the address of a global data object that resides on a remote FTP is not in

the local physical address space and causes an MMU interrupt. In contrast, if the data

object is local, the object is accessed via the Local Access Procedure (Local_Access).

If the data object is remote, an idle local access surrogate task is selected from the Surrogate

Task Pool and a rendezvous is made with the Start entry of the surrogate task via the kernel

entry call procedure ts_call. The object access parameters and source site ID are passed as

formal rendezvous parameters.

The number of local surrogate tasks in the Surrogate Task Pool determines the maximum

number of concurrent global data accesses permitted. If there are no idle (i.e., blocked at

Start entry) local access surrogate tasks in the pool, a TASKING exception is raised in the
local task.
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_gc,,s_s.gg!:gl1_

access_type l

object_address
objectsize
[objecLvalue]
object gpc

Task..Select

select local access
surrogate task from
Surrogate Task Pool

local_access task_ID
local_ access_.entry_R)
access_type
object_address
objeet__size
[objectvalue]
object._gpc

ill

ts _call
ii

rendezvous with

local access surrogate
task

from local task

access type
object_address
object_size
[object_value]

Remote_Test

Test for remote object

01"

gc..c.r,_.gglglm

l accesstype

object_address
object_size
[object__value]

LocalAccess

access locally resident
object

[objecLvalue]

return to local task

to local acces: surrogate task

local access surrogate start params
access_type
object_address
objectsize
[objecLvalue]
object__gpc

Figure 3-8. Global Object Access Procedure
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3.2.2.2 Process Name: Local_Access Surrogate Task

Inputs:

• local access surrogate start parameters:

access_type

objecLaddress

objectsize

[objecLvalue]

object._glX:

• local access surrogate stop parameters:

[object_value]

Outputs:

To User Servic¢_

• IC access message parameters

To kernel

• [objecLvalue]

This task (Figure 3-9) provides the interface between the local task and the User Services in

the Transport Layer. The Start entry receives the object access parameters from the kernel.

The IC access message is constructed and transmitted to the remote site by the Send_Output

procedure of User Services (see Section 4.2.1.3.4) utilizing the following parameters:

• dest_gpc

• dest_task

• msg_size

• msg_prio

• msg_buffer

Destination site identifier ( = object__gpc)

Message destination on remote site (Global Data Manager Task).

Size of message data buffer.

Priority of message.

Message data buffer:

msg_ID (= access_type).

local_access_task_ID

object_address

object_size

[objecLvalue]

Since global object addresses are valid on the remote site, these may be transmitted directly.

After completion of the call to Send_Output, the surrogate task is blocked at the Stop entry

to wait for completion of the data access at the remote site.
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TheStop entry receives any global object value (read mode) from the Rendezvous Manager

Task (Rndv_Mgr). The object value is passed to the local task via the kernel during normal

completion of the local task-surrogate rendezvous. After the rendezvous has completed,

the surrogate task is blocked at the Start entry, effectively returning it to the Surrogate Task

Pool.

Any exception raised in the local access surrogate task is returned to the local task as an

Ada TASKING exception.

from ts_call local access surrogate start uarams
access_type
objecLaddress
objeccsize
[object_value]
object_Ix:

Start /jaccept Start()do /

I_ :t°J _ endaCndC'e_°StopOd° /Start; / /

local access surrogate

[object._value]

from GlobalData_Mgr to local task
via kernel

dest...gpc
dest_task

msg_size
msg_prio

IC access msff uarams

(=object_.gpc)
(---GlobalData_Mgr)

msg_buffer :

rnsg_ID (=access_type)
local_access_task _ID

object_address
object_size
[objectvalue]

,!
end_Ou_ut

_ansmit IC

iSpgctOremote

Figure 3-9. Local Access Surrogate Task
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3.2.2.3 Process Name: Remote Access Surrogate Task

Inputs:

• remote access surrogate start parameters:

msg_ID

source__g_

local_access_task_ID

objectaddress

object__size

[object_value]

From Local Access

[object_value]

Outputs:

To User Services

• IC end-of-access message parameters

To Local Access

• access parameters:

access_type

object_address

object_size

[object__value]

This task (Figure 3-10) provides the interface between User Services in the Transport

Layer and the Local Access Procedure (Local_Access) in a distributed global data access

The Start entry receives the local access parameters, access type (msg_ID), and source site

ID (source_.gpc) from the Global Data Manager Task. The locally resident global data is

accessed via a procedure call to Local_Access. The data is accessed in a contention

protected manner. After the access has completed, the IC end-of-access message is

constructed and transmitted to the source site by the Send_Output procedure of User

Services utilizing the following parameters:

• dest_gpc Source site identifier (= source_gpc).

• dest_task Message destination on source site (Global Data Manager Task).

• msg_size Size of message data buffer.

• msg_prio Priority of message.

• msg_buffer Message data buffer:

msg_ID (= end of access)

local_access_task_ID

[object_value]
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After completion of the call to Send_Output, the remote access surrogate task is blocked at

the Start entry, effectively returning it to the Surrogate Task Pool

Any exception raised in the remote access surrogate task is returned to the access requesting

task at the source site as an Ada TASKING exception.

Start / accept Start() do
•.._t ) end 5tart;

° .

to Local_Access from Local_Access

access mrams
access_type
object_address
object_size
[object value]

[object_value]

/

/
remote access surroffate start mrams:

msg__ID
source_gpc
local_access_task_ID

object_address
objectsize
[object_value]

from GlobalData_Mgr

I(2 end-of-access msg params:

dest__gpc (=source_gpc)
dest_task (=GlobalData_Mgr)

msg_size
msg_prio
msg_buffer:

msg_ID (=end_of_access)
local_access_task_ID

[object_value]

?

_end_Output

transmit I(2

msg to
local gt_

Figure 3-10. Remote Access Surrogate Task
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3.2.2.4 Process Name: Global Data Manager Task

Inputs:

From User Services

• access message parameters:

msg_ID (= access_type)

local_access_task_ID

object_address

object_size

[objecLvalue]

source_gpc

or

• end-of-access message parameters:

msg_ID (= end of access)

local_access_task_ID

[objecLvalue]

Outputs:

To remote access surrogate task

• remote access surrogate Start parameters:

msg__ID (= access_type)

local_access_task__ID

object_address
objectsize

[objecLvalue]

To local access surrogate task

• local access surrogate Stop parameters:

[object_value]

Upon receipt of an IC access or end-of-access message from a remote site, this task (Figure

3-11) is initiated by an event signalled by the Message_Send_Rcv task (see Sections 4.2.1

and 4.2.2.2.28) in the Transport Layer. The message contents are obtained by calling the

Get__Input procedure in the Transport Layer.

If the message received was a access message, an idle remote access surrogate task is

selected from the Surrogate Task Pool and a rendezvous is made with the Start entry of the

surrogate task. The local access parameters and source site ID are passed as formal

rendezvous parameters.
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If the message received was an end-of-access message, a rendezvous is made with the Stop

entry of the local access surrogate task (local_access_task_ID) handling the remote access.

Any access output value (read type) is passed as a formal rendezvous parameter.

The above Start and Stop rendezvous entries are only for synchronization purposes; no

processing is performed during the rendezvous and control is returned immediately to the

Global Data Manager Task. The actual remote access processing is controlled by the

surrogate tasks, leaving the Global Data Manager Task free to concurrently handle any

other remote access requests.

to remote access

surrogate task

surro_te start _t_uams:

msg_ID
source..gpc
local__cess__task_ID
object..address
object_size
[object value]

event
interrupt

from Message_Send_Rcv

.'_ Wait_.For_.Schedule; /

/case msg_ID /

// when w.cess_type /

/ when end_of_access /

or

msg..ID (=access_type)
local_access_task__ID
object_address
ob_t_.size
[object_value]
source..gpc

msg..ID(=end_.of..access)
local access_task_.ID
[object_value]

Get..Input

fetch IC

msg

to local access

surrogate task

_ _local_ce_
mtmga_
stop params

[object_value]

Figure 3-11. Global Data Manager Task
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4.0 THE TRANSPORT LAYER

4.1 Functional Requirements and Design

The purpose of the Transport Layer is to provide end-to-end data transfer which is reliable,

efficient and transparent to a user. The functions provided by this layer include producing

a correct message in the presence of physical transmission errors, controlling the flow of

messages so that they are not overwritten before being processed, and servicing multiple

users who may be attempting to transmit messages simultaneously.

As shown in Figure 4-1, the Transport Layer as designed for AIPS has several sub-layers.

At the highest level are the User Services, whose function is to provide a standard interface

to the Transport Layer user which is simple and insulates the user from the details of how

the lower sub-layers are implemented. Below the User Services is the Message Send

Receive function, which transmits outgoing messages that have been funnelled to it by the

User Services and distributes incoming messages to the appropriate user. Below the

Message Send Receive process on the input side is the ICIS Redundancy Management

function, whose job is to analyze the redundant copies of an input message available in the

ICIS, identify faults, and present a single congruent copy of the message to the Message

Send Receive function.

The Transport Layer must be able to service users residing on both processors of an FTP

channel, as well as multiple users on the same processor. To serve these diverse users

most efficiently, the User Services are designed as a set of re-entrant subroutines which

may be called by any Transport Layer user, while the Message Send-Receive process is a

separate task. Communication between the two sub-layers takes place through a set of

shared data structures that allow output messages to be queued for the Message Send-

Receive task and input messages to be queued for the user. The format of the data

structures and the program design allow the two sub-layers to operate asynchronously.

Similarly, the ICIS Redundancy Management function is designed as a separate task which

passes congruent input messages to the Message Send-Receive task through a shared data

structure. The format of this data structure allows these two sub-layers to also operate

asynchronously.

4.1.1 Functional Requirements and Design: _User Services

A Transport Layer user is any process that wants to send a message without expecting any

session layer functions to be performed for it. System tasks such as the Status Reporter

and System Manager and applications such as the Central Command and Processing task

are examples of users that interface directly with the Transport Layer. The primary services
available to these users are:

sending a message

confirming that an outgoing message was successfully Iransmitted, and

retrieving incoming messages which have previously arrived.
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In addition, there are initialization services which a user must invoke before beginning its

main task loop. These services enable the user to:

specify the location (GPC and processor) where it will execute,

specify the size of an "IN" box, where incoming messages will be held until

the user retrieves them, and

specify the size of an "OUT" box, where outgoing messages will be held until

they can be transmitted.

Message Sending. This service allows the user to send a particular message. In addition

to identifying the message to be sent, the user must also specify information required to

send it, such as the destination GPC and destination user. Point-to-point transmission and

broadcasting are both supported. A user may also specify that later on it will want

confirmation that the message was successfully transmitted. The user's message and

relevant control information required to send it are copied into the user's "OUT" box and

the message is added to the outgoing message queue. The Message Send-Receive task is
then notified that there is work to do.

Message Retricva,1. As they arrive, incoming messages are stored in the destination user's

"IN" box. The message retrieval function hands over these accumulated input messages in

FIFO order to the user. In addition to the actual message, the user is also provided with the

GPC and task identification of the sender and a user-supplied message priority.

Status Checking. This service tells a sender the current status of a particular output

message. This feature might be appropriate for a user who is sending a one-time message

and wishes to retransmit if the message does not get through on the fh'st attempt. The

status information indicates whether the transmission is still in progress or has completed,

and if completed, whether successfully or with a particular type of error.

Task Location Identification. This is a one-time service which a user must invoke in order

to identify itself to the Transport Layer. Here the user specifies its user ID, processor ID

(either CP or IOP), and GPC ID (either a specific GPC or ALL_GPCS). The information

is entered into a central database so that a message recipient can be located simply by its

user ID, if desired. This database will be updated when functions are migrated from one

GPC to another. This shields a user from having to know the specific location of a

particular task.

This is a one-time service which must be invoked by users wishing to send

output messages. Here the user must specify the size of the largest message it will be

sending and the maximum number of output messages it expects to have ongoing at any

one time. Buffers of the size and number indicated are dynamically allocated and their

addresses stored in an Output Buffer List for the particular user.
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Input Setup. This is a one-time service which must be invoked by users expecting to

receive input messages. Here the user must specify the size of the largest message it

expects to receive and the maximum number of input messages it anticipates may be queued

for it an any one time. Buffers of the size and number indicated are dynamically allocated

and their addresses stored in an Input Buffer List for the particular user. The user process

also specifies whether it wants to be signaled by an event when input arrives or whether it

is going to poll for input. If the user wants to be signaled, an event is allocated and

initialized and its address returned so that the user may schedule itself based on that event.

4.1.2 Functional Requirements and Design: Message Send-Receive Task

The Message Send-Receive task has two main functions: (1) to send output messages as

requested by Transport Layer users and (2) to distribute incoming messages.

The Send function has two main parts. The first part is to physically transmit a message via

the ICIS. This involves making a user message conform to the packet size required by the

ICIS and executing the ICIS chain required to start the physical transmission. The second

part is to guarantee the reliability of a particular communication by using a protocol which

confirms the arrival of the message at the end user level.

The Receive function does not read incoming packets from the ICIS; this work is done by

the ICIS Redundancy Management task. The Receive function takes the congruent packets

which have been formed by ICIS Redundancy Management, assembles them into a

complete message, and saves the message for the user's later reference. Optionally, it

causes the user to be signalled when input arrives.

Transforming Messages into Packets. The basic unit of data that can be transmitted and

received by the ICIS is a packet, which can be a maximum of 127 bytes. Not only must a

user message be divided into sections if it is bigger than the maximum packet size, but

control information must be attached to each message (or section of a message) so that the

message can be identified at its destination. Additional control information for the ICIS

hardware and for the ICIS Redundancy Management task must be attached before a

message is ready to be physically transmitted.

Message Sending Protocol. Packets are sent using a limited send-acknowledge protocol.

The "send-acknowledge" part of this protocol enables the sending GPC to receive explicit

confirmation that each packet was received. This confirms that the destination GPC is

functioning correctly; in the case of a simplex GPC it also confirms that the ICIS and

communication links are functioning correctly. The "limited" part of the protocol controls

the flow of messages so that input packets are not read into the destination ICIS dual-ported

memory faster than they can be handled by the processor. Specifically, the number of

outgoing packets to anY other one GPC at any given time is limited. When the maximum

number has been reached, a new output packet cannot be sent until an acknowledgement is
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receivedfor a previousone. Messages that do not fit into one packet require a series of

transmissions: each packet that is sent must be acknowledged before the next section of the

message can be sent.

Output messages are sent in FIFO order. There is no provision for ordering them

according to the priority of the originating task or user-assigned priority of the individual

message.

Assembling and Distributing Input Messages. Input packets must be stripped of the

header information inserted by the sending Transport Layer before the packet is presented

to the end user. In the case of messages consisting of multiple packets, the entire message

must be assembled, with successive packets being checked for correct sequencing. It is

also necessary to check that a user's "IN" box, where the message is held until the user

requests it, is not full. In this case, which indicates that the user is far behind in his

processing, an Undeliverable indication is returned to the sending GPC.

4.1.3 Functional Requirements and Design: ICIS Redundancy

Management (RM)

The hardware modular redundancy scheme used to provide highly reliable processing in the

core AIPS FTP is extended to the inter-computer communication hardware for the

distributed AIPS system. Three redundant communication paths or layers are available for

passing redundant copies of communicated data between FTPs. Each channel of an AIPS

FTP has a hardware module, the Inter-Computer Interface Sequencer (ICIS), which

provides an interface into the AIPS communication network. Each ICIS provides a means

for the channel to transmit on only one of the three redundant communication layers and to

receive redundant copies of data packets from all three layers. The ICISes for redundant

channels of an FTP transmit on distinct layers; when a triplex transmits on the network

under non-faulty conditions, a packet is sourced onto each of the three layers from one and

only one of the channels. At the receiving end of this communication path is another set of

ICISes, one per channel of the receiving FTP, each of which receives a copy of the

communication packet from each active layer. Since the specification for the AIPS

distributed system calls for the support of mixed redundancy levels of the FTPs

subscribing to communication services, the number of active layers and the number of

redundant copies of data packets received are time-varying parameters even in a fault-free

system.

Unique functional requirements are made of the system software to support this redundant

communication system. That is, there are software functions to be performed in this

system which are not necessary to support a non-redundant communication system.

Software operations are required to distill a single, channel-congruent representation of a

data packet from the multiple redundant packets received. Error detection and fault

isolation operations must be performed. Status updates must be made in response to error
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detectionsto assuresynchronous, valid operation of the communication hardware. The

congruent state of the ICIS hardware must be maintained during the recovery of channels,

communication layers, and ICISes following repair operations or after transient faults.

4.1.3.1 Functional Requirements Associated With IC Communications

A software interfaceisrequiredbetween the higherlevelsoftware functionsof the ICCS

Transport Layer and the redundant ICIS hardware. This software interfacehides the

redundancy of the communication hardware from the other Transport Layer software. That

is, the higher levels of the Transport Layer need no knowledge of the redundancy of

incoming packets and are not required to perform any special operations related to the

redundant hardware during the transmission of packets.

4.1.3.1.1 Redundancy Management During Data Reception Process

The source congruency function has the responsibility of processing the redundant

communication packets received from the IC network such that all redundant channels of

the receiving FTP obtain a congruent representation of this data. This function requires that

the received data be exchanged among the channels of the receiving FTP and that voting

operations be performed for fault masking purposes. Congruent data and congruent

decisions about the fault status of this data are required to be returned by this function

under any fault scenario which is to be tolerated by the core FTP.

The ICIS ILM software isresponsibleformaking alldecisionsrelatedto thereceptionof

datafrom the IC network. A channel congruentdecisionmust be made as to whether new

data has been received by the ICIS and isready forprocessing.A decisionmust be made

as to which layer or layershad data on them during a packet communication event. A

congruent decisionmust be made as to thenumber of data bytes receivedwithinan input

packet. All of thesedecisionsare made in supportof the sourcecongruency functionfor

thereceiveddata.

4.1.3.1.2 Redundancy Management During Data Transmission Process

Software support is required for correct operation of the ICIS hardware during the

transmission of data packets on the IC network. Note that this operational phase is

assumed to include the network Polling function as well as the sourcing of raw data on the

network once a subscriber has gained network possession. The correct redundancy level

encoding must be updated before an ICIS poll operation is initiated to insure correct

operation during the "redundancy contention sequence" of the network poll. The masks for

the ICIS state exchange voters must be updated on the basis of the current channel/ICIS

configuration. A determination as to which layers will have data transmitted on them must

be made in order to correctly encode the layer redundancy level in the outgoing packet (for

layer fault detection and isolation purposes), and in order to enable the outputs to the
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appropriatelayers. A channel congruent decision must be made as to when the ICIS has

completed previous transmission activity and is available for transmitting another packet.

Each channel must synchronously command its ICIS to begin the polling and data

transmission operation.

4.1.3.2 Requirements for the Detection and Isolation of Faults (FDI)

Associated With the IC Hardware

The detection of error states in the IC hardware and the isolation of faults related to such

states are required functions of the ICIS redundancy management software. These required

functions facilitate a more robust communication process. Valid communicated data is

more likely to be transferred if hardware faults are detected, isolated, and masked.

4.1.3.2.1 FDI During Data Reception Process

Faults in the IC hardware may result in erroneous data and status values being received at a

network site. Comparisons of received redundant copies of data and status values are used

to detect the presence of such errors. The location of the fault responsible for the error is

isolated to a "fault isolation region" on the basis of these same comparisons of redundant

data and status. It is recognized that there are cases in which the redundancy of the

received information may not be sufficient for making unambiguous fault isolation

decisions. No received data is passed along to the Transport Layer when the ambiguity can

not be resolved. But the fact that there has been a disruption in the operation of the IC

network will be reported to the System FDIR Manager, which may have access to

information required to accurately isolate the fault.

The FDI process is able to determine error patterns indicative of a situation where two or

more simultaneous faults have manifested errors. The processing of received data

associated with a communication packet exhibiting such\"double fault" error patterns can be

aborted with no data being passed on to the Transport Layer.

4.1.3.2.2 FDI During Data Transmission Process

The transmission of data from an ICIS onto the IC network requires a successful network

polling operation in which the site is granted network possession, followed by the

execution of a chain of ICIS instructions responsible for outputting the data. All requests

by the Message Send-Receive function and the IC Network Manager for transmitting data

must be funnelled through an ICIS RM function. This function is required to detect errors

associated with network arbitration and network possession. Errors related to the inability

to execute ICIS instruction chains are also detected by this function.
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4.1.3.3 Requirements for the Management of Responses to Detected

Errors in IC Hardware

The ICIS RM software makes responses to detected errorsas required to maximize the

likelihoodof continuedcorrectcommunication of dataacrossthe IC network. In response

to certaindetected faults,the ICIS RM notifiesother ICCS functions (e.g.,Network

Manager) of a faultand letsthesefunctionsmanage subsequent errorcorrectionor fault

masking operations.The ICIS RM isresponsibleforcorrectiveactionsor faultmasking

operationsinvolving the localICIS resource. Statusvariablesreflectingthe healthand

availabilityof ICIScs and layersarcmaintained and used in masking of data/statusduring

theprocessingof packets receivedfrom the network. CertainICIS controlregisters(e.g.,

"voter"mask fortheICIS stateexchange) arcalsoupdated inresponsetodetectederrors.

In response to detected errors, the ICIS RM executes retry self-tests and evaluates the

results of these tests to determine if a fault has been removed or if a transient error

condition has subsided. These self-tests are only required to evaluate the state of faulty

hardware local to the FTP (i.e., the ICIS itself or inter-ICIS links), and not faults on the

actual network (i.e., nodes and inter-nodal links) which are handled by the IC Network

Manager.

4.1.3.4 Requirements for Performing Re.Initialization of ICIS Hardware

on Recovery of Channel and/or ICIS

The ICIS RM software is responsible for all functions required to bring the ICIS hardware

back into operation following the recovery of a previously failed FTP channel and/or ICIS.

Some ICIS registers associated with network polling and the execution of solicited chains

used for outputting data onto the network are also re-initialized, while other registers are

dynamically updated when each request to execute a solicited chain is made. All necessary

ICIS registers and ICIS instruction sequences required to receive unsolicited input are

initialized following a recovery event. The re-initialization function is implemented such

that no unsolicited input to the FTP from the IC network is lost during the course of

bringing an ICIS back on-line. This ICIS re-initialization function is also required to

manage information regarding the state of the unsolicited input data buffers in ICIS dual-

port memory at the time of the re-initialization. This information is needed by the ICIS RM

software processing incoming data; a determination must be made as to which received data

packets came before and which came after the recovered ICIS was brought on-line. An

interface to the Local System Services software is provided so that requests to re-initialize

the ICIS of a recovered channel can be made to the ICIS RM software.

The current implementation of the ICIS hardware requires software intervention to recover

from a "possession default" event. A possession default is said to have occurred if an ICIS

is in a state of network possession and it recognizes network activity in the form of "poll

pulses" used to initiate network arbitration sequencing. The ICIS RM software must
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providea functiontoresettheICISstatemachinefollowing apossessiondefault;otherwise
the ICIS will never be able to start anotherrequired poll sequencepreceding the
transmissionof dataon thenetwork.

4.2 Software Specifications

As mentioned previously, the Transport Layer must be able to support users residing on

both processors of an FTP channel. The lower sub-layers of the Transport Layer, i.e., the

Message Send Receive and ICIS Redundancy Management functions, execute on only one

processor (IOP), while the User Interface routines reside on both the CP and IOP. This

allocation of tasks and the location of their shared data is illustrated in Figure 4-2.

The Ada packages used to implement the Transport Layer must be structured so that the CP

link does not include modules used only on the IOP. In particular, the User Services must

not reference packages used on the IOP, such as the Message Send-Receive package. The

Ada packages which make up the Transport Layer are shown in Figure 4-3. The arrows in

this figure indicate one package referencing Cwith"ing in Ada terminology) another. The

end of the arrow represents the package making the reference; the arrow point touches the

package being referenced. The long dashed line separates Transport Layer users from the

Transport Layer. The short dashed line separates packages located on both the CP and IOP

from those located only on the IOP.

4.2.1 Software Specifications: User Services

4.2.1.1 ICCS User IDs

Transport Layer users need a way of identifying themselves, both to each other and to the

Transport Layer. The most straightforward way to do this is to define an enumeration type

in a package which can then be referenced by all user packages as well as packages in the

Transport Layer.

This scheme becomes cumbersome, however, when new users must be added to the

system. Each time a new user is added numerous packages must be recompiled, including

many system files. In addition, it is desirable to separate system users from application

users, so that when new application user IDs are added, only application tasks need to be

recompiled. To deal with these issues, a scheme has been adopted which defines some

maximum number of user IDs and then separates them into two packages, system user IDs

and application user IDs. Each package defines its own IDs in a fixed position and leaves

space for the users it cannot see. Intermediate USER_SERVICES packages are then

employed to take the user ID as defined for the user (i.e., the enumeration type) and use the

'pos Ada attribute to translate it into the user ID as defined for the Transport Layer (i.e., an

integer). This scheme is illustrated in Figure 4-3. The reader should refer to Appendix B:

Transport Layer User's Guide for specific details and examples.
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4.2.1.2 Data Structures

TheUserServicesroutinesusethefollowing datastructures:

UserOutput Buffer

Output Buffer List

User Input Buffer

Input Buffer List

CP / IOP Output Queue

User Input Queues

Input Event List

Error Log

CP and IOP Task Location Tables

All of these structures except for the Output Buffer List are shared with the Message Send-

Receive task.

User Outout Buffers. These buffers serve as a user's "OUT" box, where messages are

held until they can be transmitted. The buffers are dynamically allocated in the User

Services routine OUTPUT_SETUP, which the user process calls as part of its initialization

procedure. The size of the buffers and the number allocated are specified by the user.

In addition to the actual data the user wants to send, the buffer contains control information

used in transmitting the message:

Flag. Current state of the buffer, i.e., whether it is unused, currently having

an output message transferred into it, holding a message in the process of

being sent, or holding a message which has been completely transmitted.

Message Priority. A number from 1 to 100 which is assigned by the user.

Destination GPC. A code identifying the destination GPC.

Destination User. A code identifying the destination user.

Byte Count. Length of the user message to be sent.

Error Code. A code identifying the result of the transmission, e.g., message

sent correctly, destination GPC not responding, etc.

User Error Check.. A flag indicating whether or not the user will later inquire

about the status of the message transmission.

User Message ID. A user-supplied 16-bit field used to identify the message

when the user inquires about its transmission status.

User Check Time. Latest time that status about the particular message will be

held. If the user has not inquired about its status by this time, all information

about the message will be deleted.
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Outgoing Count. Number of GPCs which have not yet acknowledged

receiving the message. This field is used to determine how long to retain

information about a broadcast message.

Outaut Buffer List. This list is a two-dimensional array which identifies the output

buffers which have been allocated for all ICCS users. A user can allocate a maximum of

20 output buffers, implying that at most it can have 20 output messages in progress at one
time.

User Innut Buffers. These buffers serve as a user's "IN" box, where messages are

held until a user requests them. The buffers are dynamically allocated in the User Services

routine INPUT_SETUP, which the user process calls as part of its initialization procedure.

The size of the buffers and the number allocated are specified by the user.

In addition to the actual data that is the user's message, the buffer contains control

information:

Flag. Current state of the buffer, i.e., whether it's empty, in the process of

being filled, or contains a complete message ready for delivery to a user.

Message Priority. A number from 1 to 100 which is assigned by the user.

Source GPC. A code identifying the originating GPC.

Source User. A code identifying the originating user.

Byte Count. Length of the user message.

Inout Buffer List. This list is a two-dimensional array which identifies input buffers

which have been allocated for all IC users. A user process can allocate a maximum of 20

input buffers, implying that at most it can have 20 input messages pending.

CP / IOP Outnut Oueue. The output queue is a one-dimensional array which identifies

all buffers which currently have messages to be sent. The originating task is identified for

each buffer, since there is only one queue per processor for all users. Output messages are

sent from each queue in FIFO order;, there is no provision for ordering according to the

priority of the originating task or the priority of the individual message.

Each processor's queue is controlled by two indices: the add index and the process index.

Since User Services and the Message Send-Receive task are operating on this queue

asynchronously (User Services is adding entries; Message Send-Receive function is

removing them), each uses its own index to maintain its current position in the array. The

add index indicates the next available slot in the array where User Services can queue a new

message. The process index indicates the next message in the queue to be transmitted by

the Message Send-Receive function. When the process index is the same as the add index

the queue is empty. In order for these indices to work correctly, the array can never be

full. Since there is a maximum of 35 users, each of which could allocate 20 output buffers,
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thetheoreticalmaximum size of this queue is 700 entries. But given all the constraints of

the system, it would be impossible to have this many output messages in progress at one

time, and so only 50 entries have been allocated for each queue.

User lnout Oueue. This queue is a two-dimensional array which identifies for each

user all buffers holding input messages. Input messages for any particular user are handed

over in FIFO order;, there is no provision for ordering them according to the priority of the

sending task or the priority of the individual message. Each user's queue is controlled by

two indices: the add index and the process index. Since the Message Send-Receive task

and User Services are operating on this buffer asynchronously (Message Send-Receive is

adding entries; User Services is removing them), each uses its own index to maintain its

current position in the array. The add index indicates the next available slot in the array

where Message Send-Receive can queue a new message. The process index indicates the

next message in the queue to be given to a user via the User Services routine GET_INPUT.

When the process index is the same as the add index the queue is empty. In order for these

indices to work correctly, the array for any particular user can never be full. Since a user

can allocate a maximum of 20 input buffers, each array has room for 21 entries.

The relationship between the various input and output buffers and queues is shown in

Figure 4-4.

lnout Event List. This list is a one-dimensional array which indicates for each user

whether or not it should be signaled when an input message arrives. If the user does wish

to be signaled, the list contains the address of the event to be used to start the user task.

Error Lo_. This structure is used by both User Services and the Message Send-Receive

function to record unexpected events and error conditions. Refer to Section 4.2.2.1 for a

complete description of this log.

CP and IOP Task Location Tables. These tables identify the processor ID, GPC ID,

and Task Control Block for each ICCS user. Information about CP users is entered in the

CP table; information about IOP users is entered in the IOP table.
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4.2.1.3 Process Descriptions

USER SERVICES
ROUTINES

Output Identify Get
Setup Task Location Input

Input Send Check
Setup Output Output Status

Figure 4-5. User Services

4.2.1.3.1 Process Name: OUTPUT SETUP
m

Inputs:

User ID

Number and size of output buffers to be allocated

Outputs:

Output buffers with state initialized to UNUSED

CP/IOP output buffer lists

Description:

This routine is called by Transport Layer users during task initialization. Its function is to

allocate buffers which will be used as temporary holding areas for messages the user

wishes to send.

Versions of this routine exist in three packages:

USER_SERVICES_SYS (for system users)

USER_SERVICES_APP (for application users)

USER_SERVICES (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user

ID known to the user into the integer-type user ID known to the Transport Layer. It then

calls the Transport Layer version of the routine to do the actual work.
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Theuserhasspecifiedthenumberof buffers to beallocatedandthelengthof the longest
message.Theactualbuffer sizeis calculatedby addingthesizeof thecontrolinformation
storedwith eachoutputmessageto theuser'smessagelength. Buffers for CP usersare
allocatedfrom sharedmemoryandtheiraddressesstoredin theCPOutputBuffer List for
the particular user. Buffers for IOP usersareallocatedfrom local memory and their
addressesstoredin theIOPOutputBufferList for theparticularuser.Theflag field in each
bufferallocatedis initializedtoUNUSED.

A user may allocate a maximum of 20 output buffers. If a user tries to allocate more than

this number, 20 buffers will be allocated and an error will be recorded in the ICCS Error

Log.

4.2.1.3.2 Process Name: INPUT SETUP

Inputs:

User ID

Number and size of input buffers to be allocated

Outputs:

Input buffers with state initialized to UNUSED

CP/IOP Output Buffer Lists

Event to trigger user task

Description:

This routine is called by Transport Layer users during task initialization. Its function is to

allocate buffers to temporarily hold input messages that arrive for the user.

Versions of this routine exist in three packages:

USER_SERVICES_SYS (for system users)

USER_SERVICES_APP (for application users)

USER_SERVICES (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user

ID known to the user into the integer-type user ID known to the Transport Layer. It then

calls the Transport Layer version of the routine to do the actual work.

The us_. has specified the number of buffers to be allocated and the length of the longest

message expected to be received. The total buffer size is calculated by adding the size of

the control information stored with each input message to the user's message length.

Buffers for CP users are allocated from shared memory and their addresses stored in the

CP Input Buffer List for the particular user. If a user wants to be signaled by an event

when input arrives, the address of a previously allocated event is passed back so that the
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user may schedule itself based on that event. Buffers for IOP users are allocated from local

memory and their addresses stored in the IOP Input Buffer List for the particular user. As

is the case for CP users, an IOP user who wants to be signaled by an event when input

arrives is returned the address of a previously allocated event. The flag field in each buffer

allocated is initialized to UNUSED.

A user may allocate a maximum of 20 input buffers. If a user tries to allocate more than

this number, 20 buffers will be allocated and an error will be recorded in the ICCS Error

Log.

4.2.1.3.3 IDENTIFY TASK LOCATION

Inputs:

• User ID

• GPC ID

• Processor ID

• Address of Task Control Block

Outputs:

CP/IOP Task Location Tables

Description:

This routine is called by Transport Layer users during task initialization. Its function is to

enter the initial location of each user into a central database so that its GPC, processor and

task control block address are known globally.

Versions of this routine exist in three packages:

USER_SERVICES_SYS (for system users)

USER_SERVICES_APP (for application users)

USER_SERVICES (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user

ID known to the user into the integer-type user ID known to the Transport Layer. It then

calls the Transport Layer version of the routine to do the actual work, which involves

entering the GPC ID for the particular user into either the CP Task Location Table or IOP

Task Location Table.

This routine is written as a function which returns a boolean, but the value being returned

has no meaning. The routine was written in this way so that it could be invoked as part of

the package specification which defined the user task, rather than having to be invoked in

the package body. This, in turn, was a result of the design of the distributed system, in
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which a given packagebody might resideon only oneGPC but packagespecifications
would resideonall GPCs.

4.2.1.3.4 SEND OUTPUT

Inputs:

User ID

Address of message to be sent

Destination GPC

Destination user

Message length

Message priority

User-specified message ID

Flag for later error checking

Outputs:

CP/IOP output message queues

Selected output buffer

Error code for caller

Description:

This routine is called by a Transport Layer user that wishes to send an output message.

Since the Transport Layer must be independent of user-defined types, the message is

specified by its starting address and size.

Versions of this routine exist in three packages:

USER_SERVICES_SYS (for system users)

USER_SERVICES_APP (for application users)

USER_SERVICES (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user

ID known to the user into the integer-type user ID known to the Transport Layer. It then

calls the Transport Layer version of the routine to do the actual work.

The Transport Layer version finds a free holding buffer from among those ihe user has

allocated at initialization and copies the message into it. It also enters all the control

information required to send the message. Finally, it adds the buffer to the appropriate CP

or IOP outgoing message queue. Since there is only one output queue per processor but

multiple users, some strategy must be employed to ensure that the integrity of the queue is

not compromised by users interrupting each other. This routine uses the lock feature

provided by the operating system, so that the queue is locked before updates are begun and
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unlocked when they are complete. Any task that attempts to locl_ the queue when it is

already locked will be suspended until it is unlocked.

This routine returns to the caller any errors which prevented a message from being added to

the output queue. Typical errors conditions are no free holding buffers, message size

greater than that of the holding buffers, or IC network currently not in service. The error is

also recorded in the ICCS Error Log.

4.2.1.3.5 GET INPUT
m

Inputs:

User ID

Location for a message to be copied to

User's input message queue

Outputs:

IDs of originating user and GPC

Message priority

The message

Input-available flag

User's input message queue

Description:

This routine is called by a Transport Layer user that wants to determine if it has pending

input messages and, if so, receive the oldest one. Since the Transport Layer must be

independent of user-defined types, the message is specified by its starting address and size.

Versions of this routine exist in three packages:

USER_SERVICES_SYS (for system users)

USER_SERVICES_APP (for application users)

USER_SERVICES (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user

ID known to the user into the integer-type user ID known to the Transport Layer. It then

calls the Transport Layer version of the routine to do the actual w_rk.

The Transport Layer version checks the user's input queue for messages and sets a flag

indicating whether or not there are messages pending. If messages are pending, it copies

the oldest one to the user's area and also returns the ID of the originating user, the ID of the

originating GPC, and the message priority. Finally, the message is removed from the input

queue.
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4.2.1.3.6 CHECK OUTPUT STATUS
D

Inputs:

• User ID

• User message ID

Outputs:

Current status of the specified output message

Description:

This routine is called by a Transport Layer user that wants to check on the current status of

a particular output message. The status information returned indicates whether the

transmission is still in progress or has completed, and if completed, whether successfully

or with a particular type of error.

Versions of this routine exist in three packages:

USER_SERVICES_SYS (for system users)

USER_SERVICES_APP (for application users)

USER_SERVICES (Transport Layer version)

The purpose of the version called directly by a user is to translate the enumeration-type user

ID known to the user into the integer-type user ID known to the Transport Layer. It then

calls the Transport Layer version of the routine to do the actual work.

The user's output buffers are searched to find a match with the user's message ID field. If

no match is found, a status of MSG ID NOT_FOUND is returned. Otherwise, the current

status from the buffer is returned. It will be one of the following:

NOERRORS

MSG_NOT_COMPLETE

TRANSMIT_ERROR

DEST_GPC_NOT_RES PONDING

DEST_GPC_CANT_DELIV
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4.2.2 Software Specifications: Message Send-Receive Task

4.2.2.1 Data Structures

The Message Send-Receive task uses the following data structures:

Basic Packet

Output Packet

Input Packet

Message Status Block

Message Status Block List

Pending Message List

Outgoing Message Counts

Message Send-Receive Input Buffer

Error Log

The Message Send-Receive Input Buffer is shared with the ICIS Redundancy Management

function; the other structures are internal to the Message Send-Receive task.

Bug_...P.agli_. The maximum data (packet) size that can be handled by the ICIS during a

transmit or receive operation is 127 bytes, Not only must a user message be divided into

sections if it is bigger than this maximum size, but 12 bytes of control information must be

attached to each message (or section of a message) so that the message can be identified to

the Message Send-Receive task at its destination. After aUowing for additional control

information required by the hardware for transmission and status information which is

appended by the hardware when a message is received, the maximum amount of user data

that can be included in one packet is 104 bytes. The format of the basic packet used by

Message Send-Receive is shown in Figure 4-6.

Header I User Message [

_---12 bytes --_

Figure 4-6.

104 bytes _1

Basic Packet

The packet header contains the following information:

Packet type. A code indicating whether the packet is the f'u'st packet of a

message (MSG), a continuation packet (MSG_CONT), an acknowledgement

(ACK), or an acknowledgement for a packet which could not be delivered to

its end user (UNDELIV).

Packet number. Sequence number of the packet within the message.
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Total packets. Total number of packets in this message.

Message priority. The user-assigned priority for this message.

Source GPC. A code identifying the originating GPC.

Source user. A code identifying the originating user.

Destination GPC. A code identifying the destination GPC.

Destination user. A code identifying the destination user.

Message ID. A 32-bit field that uniquely identifies the message when the

source and destination ID fields are the same.

The contents of a packet vary according to the packet type. ACK.and UNDELIV packets

contain only the header information. The MSG packet is used to send the first (or only)

packet of a message and contains the header plus up to 104 bytes of user data. The

MSG_CONT packet is used to send continuation packets of messages longer than 104

bytes. It also contains the header plus up to 104 bytes of user data.

_. Additional information must be inserted at the front of a packet before it

can be transmitted. The first two bytes axe required by the ICIS hardware, and the next

two bytes are used by the ICIS Redundancy Management function on the receiving GPC.

The format of the output packet transmitted by the Message Send-Receive task is shown in

Figure 4-7.

ICIS
Hardware
Control

ICIS
RM

Control

_by2te s-_by2es _

Header
User Message ]

116 bytes ,,_1v I

Figure 4-7. Output Packet

The two control bytes required by the ICIS hardware are:

Byte count. Number of bytes to be transmitted in this packet. This count

includes all data after the byte count field. It is expressed in the form 128 - n,

where n is the number of bytes.

Address of destination GPC. A code to which the destination GPC will

respond when it sees the message on the network. This code uses the same

values as the destination GPC code mentioned elsewhere in this chapter.

The control information required by the receiving ICIS Redundancy Management function
is:

• Sender redundancy. A code identifying which layers the sending GPC is

transmitting on. This information is used by the ICIS Redundancy

Management in its fault detection function.
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lililuL_.a.f,k_. An incoming packet has certain status information attached to it by the

ICIS hardware before it is stored in the ICIS dual-ported memory. The ICIS Redundancy

Management function removes most of this information but extracts selected pieces before

presenting a packet to Message Send-Receive. The format of the input packet available to

Message Send-Receive is shown in Figure 4-8.

ICIS
Hardware

Status

i

|

|

Header , User Message
,

Figure 4-8.

116 bytes

Input Packet

-!

The two bytes of ICIS hardware information include the following:

Byte count. Number of bytes in this packet. This count does not include the

2 bytes of ICIS hardware information.

Time. Time the input packet was read into the ICIS dual-ported memory.

This value is derived from the fault-tolerant clock and has a granularity of 66

microseconds.

Message Status Block. The Message Send-Receive task keeps information about each

ongoing message in a Message Status Block. This structure is allocated dynamically when

a message first appears and deallocated when all handling of the message is complete. The

Message Status Block enables the Message Send-Receive task to match an incoming

acknowledgement with the source message, to control the sending of multi-packet output

messages, and to assemble multi-packet input messages. Since several messages may be

in progress at any one time, Message Status Blocks are connected to each other in a linked

list.

A Message Status Block contains the following information.

Source GPC. A code identifying the originating GPC.

Source User. A code identifying the originating user.

Destination GPC. A code identifying the destination GPC.

Destination User. A code identifying the destination user.

Message ID. A 32-bit field that uniquely identifies the message when the

source and destination id fields are the same.

Packet send time. The time the packet was transmitted. This field is used to

determine if a message has timed out, i.e., not been acknowledged within the

allowable time.
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Message status. Current status of the message, i.e., whether it is an output

message waiting for an acknowledgement, an multi-packet input message

waiting for continuation packets, or an output message on the pending list.

Output buffer pointer. Address of the holding buffer for an output message.

Output data. Address of the user data within the holding output buffer.

Input buffer pointer. Address of the holding buffer for an input message.

Input data. Address of the user data within the holding input buffer.

Lastpacket byte count. Number of bytes to be transmitted in the last packet

of a multi-packet output message.

Total packets. Total number of packets in a multi-packet message.

Current packet being transmitted. Number of the packet currently being sent

in a multi-packet output message.

Total packets received. Number of packets received so far of a multi-packet

input message.

Lastpacket received. Number of the most recently received packet in a multi-

packet input message.

Previous Message Status Block. A pointer to the previous Message Status

Block in the linked list.

Next Message Status Block. A pointer to the next Message Status Block in

the linked list.

Message Status Block List. This list identifies all messages currently in progress on

the particular GPC. Initial entry into the list is made through an array indexed by user ID

(source user for output messages, destination user for input messages). All Message

Status Blocks for a particular user are then joined in a linked list. The Message Status

Block List is illustrated in Figure 4-9.

Pendim, Messages List. As described in Section 4.1.2 on the functional design of the

Message Send-Receive task, messages are sent using a protocol which requires that each

packet transmitted must be explicitly acknowledged and that the number of packets allowed

to be unacknowledged at any one time is limited. When a message is to be sent to a GPC

already receiving its maximum messages, the latest message is put on the pending list and

will be transmitted as soon as an acknowledgement to an outstanding packet arrives. A

separate pending list is maintained for each destination GPC.

The Pending Messages List is illustrated in Figure 4-10. Each GPC's list is a one-

dimensional array of pointers to Message Status Blocks and is controlled by two indices:

the add index and the process index. Since two different processes are operating on this

list asynchronously (one process to add messages, another process to remove them), each
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Userl

User2

UserN

First MSB

Last MSB ---_ Message _/-
Status
Block

Figure 4-9. Message Status Block List

GPC 1

add index

process index

MSB pointer(I)

MSB pointer(2)

MSB pointer(11)

GPC n

add index

process index

MSB pointer(I) _

MSB pointer(2)

MSB pointer(11) -

Figure 4-10. Pending Messages List

process uses its own index to maintain its current position in the array. The add index

indicates the next available slot where a new message can be added; the process index

indicates the next message to be sent and then removed from the array. When the add

index is the same as the process index, the list is empty. In order for these indices to work

correctly, the array can never be full. An arbitrary maximum of 10 pending messages per

GPC has been established; therefore each Pending Message List has room for 11 entries.

Outgoing Message Counts. The number of output messages currently being sent to

each GPC is maintained in a one-dimensional array indexed by GPC ID. For programming

convenience, a total count is also maintained as an integer variable.
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4.2.2.2 Process Descriptions
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Messa_,e Send-Receive lnout Buffer. This data structure is used by the ICIS

Redundancy Management task to pass to the Message Send-Receive task the congruent

packets which it has formed from the multiple copies available in the ICIS dual-ported

memory.

This structure is a one-dimensional array which is controlled by two indices: the FDIR

index and the MSR index. Since ICIS Redundancy Management and Message Send-

Receive are operating on this buffer asynchronously (ICIS Redundancy Management is

adding packets; Message Send-Receive is removing them), each uses its own index to

maintain its current position in the array. The FDIR index indicates the next available slot

in the array where ICIS Redundancy Management can add a new packet. The MSR index

indicates the next packet to be removed from the array and distributed to a user. When the

MSR index is the same as the FDIR index, the array is empty. In order for these indices to

work correctly, the array can never be full. Since 36 input buffers have been allocated in

the ICIS dual-ported memory, this array has room for 37 entries.

Kr.r.O.Lh_. This structure is used by both User Services and the Message Send-Receive

function to record unexpected events and error conditions. Each entry in the log contains

an identifier for the routine logging the entry, a code identifying the error condition, the

user and GPC involved, and the time of day. There is one log on each processor. Only

User Services makes entries in the CP log, while both User Services and Message Send-

Receive make entries in the IOP log.

4.2.2.2.1 MESSAGE SEND-RECEIVE Task Body

Inputs:

Count of ongoing messages

Count of pending messages

Indices of Message Send-Receive input buffer

Indices of CP output queue

Indices of IOP output queue

Outputs:

• None
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Description:

The Message Send-Receive task has two main functions: (1) to Iransmit output messages as

requested by Transport Layer users, and (2) to distribute incoming messages. It has two

additional functions which are offshoots of these primary ones: (1) to check for packets

which have not been responded to within the time limit, and (2) to determine if messages

on the pending queue can be sent. Accordingly, the subtasks of Message Send-Receive

are"

(1) check for timeouts

(2) process incoming packets

(3) check pending messages

(4) send output messages

The Message Send-Receive task is started by an event, which can be set either by the ICIS

Redundancy Management when there are input packets to process or by User Services

when a user has a message to send. Every time it is scheduled, however, it checks its

entire list of possible things to be done. Furthermore, as long as it has handled either an

input message or a new output message during any particular iteration, it continues to

check. This strategy allows multiple processors (CP, IOP) to be signaling the task

simultaneously and allows Message Send-Receive to handle all requests as promptly as

possible with a minimum of context switching. The Message Send-Receive task thus

operates asynchronously with the processes it is Serving.

The order in which the subtasks are done is important. Timeouts must be checked fh-st so

that resources used by any timed-out messages can be freed. Input packets need to be

checked next so that acknowledgments can free resources being used for output messages.

Pending messages must be sent before newly queued output messages.

Normally the setting of an event when a task is not at its Wait_For_Schedule causes the

event to be lost. The Message Send-Receive task uses a special parameter provided by the

SCHEDULE routine so that this does not happen. This task will always be scheduled after

its event was set, even if it was not previously at its Wait_For_Schedule point.

4.2.2.2.2 CHECK FOR TIMEOUTS

Inputs:

Outputs:

Message Status Block list

Count of ongoing messages

Status fields in output buffers
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Description:

Messages in progress might time out in one of two ways. An output message could time

out because an acknowledgment was not received, either for the first packet in a message or

for continuation packets in a multi-packet message. A multi-packet input message could

time out because an expected continuation packet was not received. This routine compares

the current time to the time the outgoing packet in question (MSG, MSG_CONT for output

messages, ACK for input messages) was sent. A time limit of 400 milliseconds is allowed

for the expected packet to arrive. After this time, the Message Status Block is deleted. For

output messages, the error code field in the user's oul;put buffer is set to

DEST_GPC_NOT_RESPONDING. For an input message, the user's input buffer is
freed.

4.2.2.2.3 PROCESS IN MESSAGES

Inputs:

Outputs:

Indices of Message Send-Receive input buffer

Next available packet from Message Send-Receive input buffer

MSR_index of Message Send-Receive input buffer

Description:

This routine determines if there are input packets to be processed by comparing the

MSR_index to the FDIR_index in the Message Send-Receive input buffer. There are

packets to be processed whenever the two indices are not equal. One of four subroutines is

called to process the packet, depending on the packet type.

4.2.2.2.4 SEND PENDING MESSAGES

Inputs:

Outgoing message count for each GPC

Indices of Pending Message List for each GPC

Outputs:

Process_index of Pending Message List for each GPC

Count of pending messages

Description:

This routine is invoked when there is at'least one pending output message. It checks the

current output message count and the Pending Message List for each GPC to determine

which pending messages can be sent.
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4.2.2.2.5 SEND CP MESSAGES

Inputs:

Indices of CP output queue

Next entry from CP output queue

CP and IOP Task Location Tables

Outgoing message count for each GPC

Outputs:

Process_index of CP output queue

Local destination user's input buffer and input queue

Description:

This routine sends messages as requested by CP users by sequentially processing entries in

the CP output queue. The steps required to send a message vary according to the

destination GPC, which will fall into one of three categories:

Local GPC (i.e., destination and source GPCs are the same)

All GPCs

Single remote GPC

Local GPC. It may be that the destination user of a particular message resides on the same

GPC as the sender. This would be the case, for example, where a migratable function

currently is executing on the same GPC as a task with which it communicates, or where a

message must be sent to some user residing on all GPCs, including the one sending the

message. In this case, the IC network is not used; rather the message is moved directly

into one of the destination user's holding input buffers and added to its input queue. If no

input buffers are available to hold the message, an error is recorded in the ICCS Error Log.

All GPCs. When a message is to be sent to all GPCs in the system, the preferred method

is to transmit it in broadcast mode (i.e., addressed to all GPCs). Although only one output

packet needs to be formed and one ICIS chain executed, a Message Status Block must be

created for every destination GPC. This is because the receiving GPCs will be

acknowledging the message asynchronously and, if it is a multi-packet message, receiving

continuation packets asynchronously.

The message cannot be transmitted in broadcast mode if any of the other GPCs is currently

receiving its maximum messages from the sending GPC. In this case the message is put on

the pending queue for the GPC currently at its maximum and is sent individually to the
other GPCs.
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Single Remote QPC. A Message Status Block is created for the destination GPC. If the

GPC is currently receiving its maximum messages from the sending GPC, the message is

put on the pending queue; otherwise the packet is sent immediately.

The routine that is invoked to format and transmit the message returns a boolean indicating

whether or not the packet was successfully transmitted. If it was not, the Message Status

Block(s) is immediately deleted.

This procedure concludes by updating the process index of the CP output queue.

4.2.2.2.6 SEND IOP MESSAGES
m m

Inputs:

Indices of IOP output queue

Next entry from IOP output queue

CP and IOP Task Location Tables

Outgoing message count for each GPC

Outputs:

Process_index of IOP output queue

Local destination user's input buffer and input queue

Description:

This routine sends messages as requested by IOP users by sequentially processing entries

in the IOP output queue. The steps required are exactly the same as those required to send

a CP message except that the IOP rather than the CP output queue is used. The reader

should refer to the previous section for details.

4.2.2.2.7 FORM MSG PACKET

Inputs:

Message Status Block

Holding buffer containing the message to be sent

Outputs:

MSG output packet

Description:

This routine forms a MSG packet for a message that is to be transmitted. The MSG packet

is used to send the fhst 104 bytes of any message; if the total message is shorter than this,

only the number of bytes in the total message is sent. The necessary control information is

inserted at the front of the packet.
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4.2.2.2.8 FORM ACK PACKET

Inputs:
Current packet from Message Send-Receive input buffer

Outputs:
ACK output packet

Description:

This routine formats an ACK for the MSG or MSG_CONT packet currently being

processed from the Message Send-Receive input buffer. An ACK packet contains only the

12 bytes of control information needed to identify the message back at its originating GPC.

4.2.2.2.9 FORM UNDELIV PACKET

Inputs:
Current packet from Message Send-Receive input buffer

Outputs:
• UNDELIV output packet

Description:

This routine formats an UNDELIV packet for the MSG packet currently being processed

from the Message Send-Receive input buffer. An UNDELIV packet contains only the 12

bytes of control information needed to identify the message back at its originating GPC.

4.2.2.2.10 FORM MSG CONT PACKET

Inputs:

Message Status Block

Holding buffer containing the message to be sent

Outputs:
MSG_CONT output packet

Description:

This routine forms MSG_CONT packets for messages that are too long to be transmitted in

one packet. The last MSG_CONT packet for the message will contain only the number of

bytes in the message not yet sent; otherwise it will contain 104 bytes of message data. The

necessary control information is inserted at the front of the packet.

4.2.2.2.11 MOVE CHAIN TO ICIS DPM

Inputs:

Outputs:
Output chain to be used for transmission

Solicited chain in ICIS DPM
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Description:

This routine copies the chain to be used for ICIS transmission from local RAM to the ICIS

dual-ported memory. This chain is defined as a constant and is copied to the ICIS dual-

ported memory before every transmission.

4.2.2.2.12 SEND MSG

Inputs:

Outputs:

Message Status Block for the message

MSG output packet in ICIS dual-ported memory
Status of transmission

Description:

This routine transmits a MSG packet. The packet to be transmitted and the solicited chain

to be used are moved to ICIS dual-ported memory. Then a subroutine provided by the

ICIS_LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to start

the output chain. The status field in the Message Status Block is set to AWAITING_ACK,

and the packet send time field is set to the current time. Finally, the count variables for

outgoing messages are updated.

If the output chain could not be started or did not complete successfully, an error is

recorded in the ICCS Error Log and an error indication is returned to the caller.

4.2.2.2.13 SEND MSG CONT

Inputs:

Outputs:

O

Message Status Block for the message

MSG_CONT output packet in ICIS dual-ported memory
Status of transmission

Description:

This routine transmits a MSG_CONT packet. The packet to be transmitted and the solicited

chain to be used are moved to ICIS dual-ported memory. Then a subroutine provided by

the ICIS_LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to

start the output chain. The status field in the Message Status Block is set to

AWAITING_ACK, and the packet send time field is set to the current time. Finally, the

count variable in the output buffer is updated.

If the output chain could not be started or did not complete successfully, an error is

recorded in the ICCS Error Log and an error indication returned to the caller.
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4.2.2.2.14 SEND ACK

Inputs:

Message Status Block for the message

Outputs:

• ACK output packet in ICIS dual-ported memory

Description:

This routine transmits an ACK packet. The packetto be transmittecl and the solicited chain

to be used are moved to ICIS dual-ported memory. Then a subroutine provided by the

ICIS_LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to start

the output chain. The status field in the Message Status Block is set to

AWAITING_MSG_CONT, and the packet send time field is set to the current time.

If the output chain could not be started or did not complete successfully, an error is

recorded in the ICCS Error Log.

4.2.2.2.15 SEND UNDELIV

Inputs:
• None

Outputs:
UNDELIV output packet in ICIS dual-ported memory

Description:

This routine transmits an UNDELIV packet. The packet to be transmitted and the solicited

chain to be used are moved to ICIS dual-ported memory. Then a subroutine provided by

the ICIS_LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to

start the output chain. If the output chain could not be started or did not complete

successfully, an error is recorded in the ICCS Error Log.

4.2.2.2.16 BROADCAST_MSG

Inputs:
Message Status Blocks for the message

Outputs:

MSG output packet in ICIS dual-ported memory

Status of transmission
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Description:

This routine broadcasts a MSG packet. The packet to be transmitted and the solicited chain

to be used are moved to ICIS dual-ported memory. The destination address at the

beginning of the output packet is set to address all GPCs. Then a subroutine provided by

the ICIS_LOCAL_MANAGER is called to check that the ICIS is ready to transmit and to

start the output chain.

For a broadcast message, a Message Status Block has previously been created for each

receiving GPC. This routine sets the status field in each Message Status Block to

AWAITING_ACK and sets the packet send time field to the current time. Then the count

variables for outgoing messages are updated.

If the output chain could not be started or did not complete successfully, an error is

recorded in the ICCS Error Log and an error indication is returned to the caller.

4.2.2.2.17 UPDATE OUTGOING MSGS

Inputs:

Increment value

Destination GPC

Outputs:

Outgoing message count for the destination GPC

Total outgoing message count

Description:

This routine updates two variables which contain the number of outgoing messages in

progress on the particular GPC. One variable is an array which identifies for each GPC the

number of outgoing messages addressed to that GPC. The other variable contains the total

number of outgoing messages currently in progress.

4.2.2.2.18 GET AVAIL IN BUF

Inputs:

Outputs:

Processor ID of the destination user

Destination user

Holding input buffer list for that user

Flag field in the selected holding buffer
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Description:

This routine scans all of the holding input buffers allocated for a particular user until it finds

an empty one. It sets the flag in that buffer to BEING_FILLED and returns the buffer

address to the calling routine. If there are no empty buffers, a null address is returned.

4.2.2.2.19 MOVE DATA
m

Inputs:

Outputs:

Source address

Destination address

Number of bytes to be copied

Area pointed to by the destination address

Description:

This is an assembly language routine that copies data, for the length specified, from one

memory location to another. Its purpose is to copy data in the most efficient way possible

and in a way independent of particular data types.

4.2.2.2.20 CREATE OUT MSB
m

Inputs:

Outputs:

Current message from CP or IOP output message queue

Destination GPC

Message ID

Message Status Block

• Message Status Block List for the source user

Description:

This routine dynamically allocates a Message Status Block for the output message currently

being processed, initializes its fields, and adds it to the list of Message Status Blocks for

the task originating the message.

4.2.2.2.21 CREATE IN MSB

Inputs:

• Current packet from the Message Send-Receive input buffer

• Address of holding buffer for this packet
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Outputs:

Message Status Block

Message Status Block List for the destination user

Description:

This routine dynamically allocates a Message Status Block for the input message currently

being processed from the Message Send-Receive input buffer. It initializes the fields in the

Message Status Block and adds it to the list of Message Status Blocks for the destination

user. Note that this routine is only called for multi-packet input messages. For single-

packet messages a temporary Message Status Block is created (see following section).

4.2.2.2.22 CREATE TEMP MSB

Inputs:

Current packet from the Message Send-Receive input buffer

Address of holding buffer for this packet

Outputs:

• Message Status Block

Description:

This routine dynamically allocates a Message Status Block for the input message currently

being processed from the Message Send-Receive input buffer and initializes the fields.

This routine is only called when an input message is contained in a single packet, and the

Message Status Block is not added to the list of Message Status Blocks for the destination

user.

4.2.2.2.23 FIND OUTPUT MSB

Inputs:

• Source GPC

• Source user

• Destination GPC

• Destination user

• Message ID

Outputs:

• Address of Message Status Block

Description:

This routine searches the Message Status Block list for the source user for a match on the

input parameters listed above. If a match is found, the address of the Message Status

Block is returned to the caller;, otherwise a null address is returned.
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4.2.2.2.24 FIND INPUT MSB

Inputs:

• Destination GPC

• Destination user

• Source GPC

* Source user

* Message ID

Outputs:

• Address of the Message Status Block-

Description:

This routine searches the Message Status Block list for the destination user for a match on

the input parameters listed above. If a match is found, the address of the Message Status

Block is returned to the caller;, otherwise a null address is returned.

4.2.2.2.25 REMOVE INPUT MSB

Inputs:

• Message Status Block

Outputs:

Message Status Block List for source user

Description:

This routine removes the specified Message Status Block from the linked list of Message

Status Blocks for the destination user. It then dynamically deallocates the memory used by

the Message Status Block. If the Message Status Block cannot be found in the linked list,

an error is recorded in the ICCS Error Log.

4.2.2.2.26 REMOVE OUTPUT MSB

Inputs:

Message Status Block

Outputs:

Message Status Block for destination user

Description:

This routine removes the specified Message Status Block from the linked list of Message

Status Blocks for the source user. It then dynamically deallocates the memory used by the

Message Status Block. If the Message Status Block cannot be found in the linked list, an

error is recorded in the ICCS Error Log.
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4.2.2.2.27 ADD TO PENDING LIST

Inputs:

Message Status Block for the message to be added

Outputs:

List of pending messages for the appropriate GPC

Status field in Message Status Block

Count of pending messages

Description:

This routine adds to the pending list a message which cannot currently be sent because the

destination GPC is already receiving its maximum number of messages. There is a

separate pending list for each GPC. The new message is added in the slot pointed to by the

add_index; this index is then updated to point to the next slot.

A maximum of 10 messages may be pending for any GPC. If the pending list for a

particular GPC is full, the new message is not added and an error is recorded in the ICCS

Error Log.

4.2.2.2.28 SIGNAL INPUT

Inputs:

Destination user

CP, IOP Task Location Tables

CP, IOP Signal Arrays

CP, IOP Event Arrays

Outputs:

• Destination user's event

Description:

This routine is called after a complete input message has been assembled for a user. If the

particular user has specified that it is to be signaled (i.e., scheduled by event) when an

input message arrives, this routine causes the appropriate event to be set.
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4.2.2.2.29 UPDATE IN MESSAGES

Inputs:

Message Status Block

CP, IOP Task Location Tables

CP, IOP Input Queues

Outputs:

Input Queue for the destination user

Description:

This routine adds the message referenced by the Message Status Block to the input queue

for the destination user. The message is added in the slot indicated by the queue's add

index; then the add index is updated to point to the next slot.

4.2.2.2.30 PROCESS MSG PACKET

Inputs:

Current packet from the Message Send-Receive input buffer

CP and IOP Task Location Tables

Outputs:

Message Status Block

Holding buffer containing the input message

Description:

This routine processes an incoming MSG packet, which is the f'trst (and possibly only)

packet of any message. It uses the destination task ID from the packet to look up in the

Task Location Tables whether the message should be delivered to the CP or IOP. Then it

gets a free holding buffer from among those allocated by the user. If no holding buffers

are available, the message is not deliverable, and an UNDELIV packet is returned to the

originating GPC. In addition, an error is recorded in the ICCS Error Log. If a holding

buffer is available, a Message Status Block is created to keep track of the message. In the

case of a message which fits completely into the MSG packet, the Message Status Block is

only temporary and will be deleted at the end of the routine. The message data is then

moved to the user's holding buffer.

If the entire message is contained in this one packet, the message may now be added to the

user's input queue and the user signaled (if he has previously specified that this should

occur). If more packets are expected, variables are updated so that the current position in

the message is correctly maintained. In either case, an ACK is sent to the originating GPC.
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4.2.2.2.31 PROCESS MSG CONT PACKET

Inputs:

Current packet from the Message Send-Receive input buffer

Message Status Block previously created for the message

Outputs:

Message Status Block

Holding buffer containing the input message

Description:

This routine adds a continuation packet to the packets previously received in a multi-packet

message, so that the complete message is eventually reassembled at the receiving site.

First the Message Status Block previously created for the message is located. The input

packet is then stripped of its control data and moved to the current position in the holding

buffer. The fields in the Message Status Block which are maintaining information about

how much of the message has been received are updated to reflect the new packet., and an

ACK is sent to the originating GPC.

If the message is now completely assembled (i.e., this packet is the last one), the message

may now be added to the user's input queue and the user signaled (if he has previously

specified that this should occur).

If the Message Status Block created for the message cannot be found or a packet arrives out

of sequence, an error is recorded in the ICCS Error Log.

4.2.2.2.32 PROCESS ACK PACKET
m D

Inputs:

Outputs:

Message Status Block previously created for the message

Holding buffer for the message

• Error-code and flag fields in the holding buffer

• Outgoing message counts

Description:

This routine processes an ACK that is received for a previously transmitted packet.

First the Message Status Block previously created for the message is located. If the

message could fit into one packet, the transmission is now complete, so the error-code field

in the holding buffer is set to NO_ERRORS and the flag field is set to MSG_SENT. The
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Message Status Block is deleted, and the counts of outgoing messages are updated. If the

message could not fit into one packet, a continuation packet must now be sent.

If the Message Status Block previously created for the message cannot be found, an error is

recorded in the ICCS Error Log.

4.2.2.2.33 PROCESS UNDELIV PACKET

Inputs:

Message Status Block previously created for the message

Holding buffer for the message

Outputs:

Error-code and flag fields in the holding buffer

Outgoing message counts

Description:

This routine processes an UNDELIV that is received for a previously transmitted packet.

The transmitted packet could not be delivered to the end user because there were no free

holding buffers. Note that an UNDELIV may occur only in response to the first packet of

a message.

The UNDELIV indication is recorded in the ICCS Error Log. The error-code field in the

holding buffer is set to DEST_GPC_CANT_DELIV and the flag field is set to

MSG_SENT. The Message Status Block is deleted, and the counts of outgoing messages

are updated.

4.2.2.2.34 LOG IC ERROR

Inputs:
Error identification

Error location within Message Send-Receive task

Source or destination user for the message being processed

Source or destination GPC for the message being processed

Outputs:

• Entry in error log

• Error log index

Description:

This routine creates a new entry in the ICCS Error Log. It fills in the error identification,

error location, user and GPC fields from the input parameters. It gets the current date and

time from the standard"CLOCK" routine. It then updates the log index to point to the next

available slot.
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4.2.2.2.35 DISPLAY IC ERROR LOG

Inputs:

ICCS Error Log

Outputs:

Formatted CRT display

Description:

This routine translates the codes contained in each entry in the ICCS Error Log into

character strings using the Ada 'image attribute. It formats each entry in the log for display

on a VT220 screen.

4.2.3 Software Specifications: ICIS Redundancy Management

The software objects used to implement the ICIS Redundancy Management functions are

shown in Figure 4-12. The software architecture for these functions is driven by real-time

system requirements. The implementation of the functions related to the processing of data

received from the IC network, both the Source Congruency function and the FDI function

related to received data, must take into consideration the functions' impact on the time lag

being introduced into the inter-computer communications process. These data reception

functions are separated into a single task, the ICIS Redundancy Management (ICIS RM)

task, which is scheduled whenever new input has arrived. Since the ICIS hardware itself

does not generate an interrupt when input is received, a dedicated interval timer is set to go

off every 5 milliseconds, and the interrupt handler checks if new iCIS input has arrived.

The ICIS_RM task then performs the Source Congruency and FDI functions on a packet-

by-packet basis until all of the new input packets have been processed. A single congruent

copy of each received packet is passed to the Message Send-Receive task through the

Message Send-Receive Input Buffer (see Section 4.2.2.1). In the event of a hardware

error condition being detected while a received data packet is being processed, status

variables reflecting the health and availability of layers and ICISes axe updated immediately

within the ICIS_RM task. An error detection report is passed to another task responsible

for additional fault isolation functions and for managing further responses to the fault

which can be deferred until remaining received packets are processed.

ICIS RM functions which are less time critical have been implemented as part of this

second, lower priority task referred to as the ICIS_LOCAL_MANAGER. Included in this

task are those functions required to manage responses to detected error conditions and

those required to re-initialize the ICIS hardware. This task maintains an interface with the

Network Manager task wherein layer faults can be reported to the Network Manager and

updates' to the status of communication layers can be passed to the

ICIS_LOCAL_MANAGER which will, in turn, update local status variables. This task

also maintains an interface such that the system software managing the redundancy of the
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core FTP can make requests to have a particular ICIS "re-aligned" following the recovery

of a channel. The ICIS_LOCAL_MANAGER task, in response to hardware errors detected

by the ICIS_RM task, will also perform the less time critical functions such as error

logging and scheduling of self tests to either further isolate the fault and/or to determine

when a fault is no longer present. The execution of these self-tests and the evaluation of

their results are included in the set of ICIS_LOCAL_MANAGER functions. Finally, this

task is responsible for re-initializing an ICIS when the results of its self-tests indicate that a

fault has been removed or subsided.

ICIS_RM TASK " 1

-- RM Functions associated with reception of data
from network

-- Fault Detection and Isolation Functions associated

with reception of data from network

ICIS LOCAL MANAGER TASK

-- M-anagementof responses to detected faults

-- Management of recovery and re-initialization

of ICIS hardware

1
START_SOLICITED_CHAIN PROCEDURE 1

-- RM Functions associated with transmitting data

-, Fault Detection and Isolation Functions associated

with transmitting data

CHECK ICIS STATUS PROCEDURE

-- Fault _)etecfion and Isolation Functions

-- ICIS hardware recovery

Figure 4-12. ICIS Redundancy Management:
Functional

Mapping of
Requirements to Software Objects

Two other ICIS RM functions are made available in the form of simple subroutines which

execute in the context of the task calling them. Any task which executes an ICIS solicited

chain of instructions (e.g., to transmit data packets or to perform network management

functions involving the network nodes) must call the START_SOLICITED_CHAIN

procedure. This procedure manages the redundancy of the communication hardware

during the data transmission process and it also provides FDI functions related to

arbitration for network possession and the transmission of data on the network. A second

subroutine, CHECK_ICIS_STATUS, is available to be called by any task which detects a

problem in executing solicited chains or in accessing the ICIS memory.
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CHECK_ICIS_STATUSprovidesFDI functions and, to a lesser extent, it provides an

ICIS re-initialization function in the case of a detected possession default state.

4.2.3.1 ICIS RM TASK

Input:

Redundant data packets received from IC network

Redundant status from ICIS hardware

Output:

Source Congruent representation of received data

Fault detection and isolation information for IC hardware

Description:

This task provides the redundancy management functions associated with the reception of

data from the IC network. The IC source congruency function applied to the received data

and the FDI function related to the reception of network data have been combined within

the body of this task. This software directly interfaces with the ICIS hardware to get

redundant copies of data and status and transforms this input into a source congruent

representation and provides error detection and fault isolation information as output. The

task executes only on the IOP. The structure of this task is shown in Figure 4-13.

Each iteration of the ICIS_RM task's main loop begins with a check to see if new data

packets have been received since the last time the task ran. Before making the check,

however, a determination must be made as to which channel's ICISes are to be included in

this process of polling for new input. The data from a particular channel's ICIS is

considered usable if (1) the channel is considered non-faulty by the core FTP redundancy

management services, (2) the ICIS is considered non-faulty on the basis of status variables

maintained by the ICIS RM software, and (3) the ICIS has been initialized. The primary

means of detecting newly received packets is a comparison of two variables - Last_Pack

and First_Pack. The First_Pack variable maintains an index value for the last packet

processed by the ICIS_RM task. The Last_Pack variable maintains an index for the last

packet _ by the ICIS and is updated by the ICIS instruction sequencer as part of the

execution of the unsolicited chain of instructions responsible for accepting packets from the

IC network. Both indices take on values 1..N, where N is the number of slots in the

circular buffer allocated within the ICIS dual-port memory and used to buffer received

packets of data. The First_Pack variable is updated by the processor during the course of

processing the received packets and should always be channel congruent. However, since

the Last_Pack variable is maintained in ICIS dual-port memory and is updated by the ICIS

instruction sequencer, the redundant copies of'this variable can not be assumed to be

congruent. The comparison of First_Pack is made against a single-sourced exchanged

copy of the Last_Pack variable. A separate comparison is made for each channel
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determined to have usable ICIS data. If any comparison indicates Last_Pack and

First_Pack are not the same, then it is assumed that new input needs to be processed.

Initialize ICIS, Layer, and Inter-ICIS link status

loop

when task scheduled

determine which ICIS(es) to use

77 are new input packets available for processing 7?

no yes

determine which layer(s) to use

determine how many new packets to process

for each new packet available

clear error status record

perform source congruency and
FDI function on packet

i

?? error condition detected ??

no yes

?? has a channel just been removed from config??

no 7es

re-evaluate ICIS fault status based upon
new channel status

update layer, ICIS, and inter-ICIS link status
based upon new fault-isolation information

notify ICIS_LOCAL MANAGER task
of new fault

Figure 4-13. Structure of ICIS_RM Task Body
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(NOTE: A registeredbit of information, the Unsolicited_Input_Received(UIR) bit, is
availableon theICIS andis setwhentheICIS receivesaninput packetwhileoperatingin
the unsolicited mode. This bit can be used to check for new data. However, this
mechanismwasnot usedto determinewheninput packetsneedto beprocessed,dueto an
anomalyin theICIS hardwareimplementation.TheICIS hardwarewill advancethrough
an INPUT instructionin the UnsolicitedChaindueto modecontextswitches- Unsolicited
to Solicitedandbackto Unsolicitedmodes- independentlyof thereceptionof a network
packet. This advancementof INPUT instructionsresultsin the "skipping" of the input
buffer associatedwith the "skipped"INPUT instruction. This input bufferobviously has
no datato process,yet it mustat leastbeprocessedto thepoint of determiningthatit is a
"null" input packet. The UIR bit does not get set due to this "skipping" of input
instructionsandif it were usedalonefor polling purposes,multiple null packetscould
accumulatebeforethe ICIS_RM taskdecidedto processthesepackets. The Last_Pack
variable,on theotherhand,doesgetupdatedwhenINPUT instructionsareskipped.)

If thecheck for newly receivedpacketsindicatesthereis currently no processingto be
performed,the iteration of the ICIS_RM taskis completedand the task is suspended.
Otherwise,thetaskwill continueto executeuntil all of the newlyreceivedpacketshave
beenprocessed.Thenumberof packetsto beprocessedis a functionof thecurrentvalues
of First_PackandLast_Pack.Again,caremustbetakento ensurethat thechannelsof the
FTPuseacongruentvalueof LasLPackwhichmaybenon-congruenteitherbecausethere
is an ICIS failure or becausetheinstructionsequencersfor thedifferent channels'ICISes
arenot synchronizedandthereforedon'tupdatetheLast_Packvariableatexactlythesame
time. In thecasewheretwo or threeICISesarebeingused,theLast_Packvariableisread
repeatedlywith an implicit voted exchangeuntil two successivereadsreturn the same
value. Whenonly one ICIS is beingused,theLast_Packis readonceusingan implicit
singlechannelselect.

An inner loop of theICIS_RM task'smain loop is executedwhereeachiteration of this
inner loop providesthe necessaryprocessingfor performingthe sourcecongruencyand
FDI functionson anindividual inputpacket.Thedetailsof theProcess_Packetprocessas
applied to a single input packetareprovided in Section4.2.3.1.1. An error record is
maintainedfor theprocessingof anindividualpacketandaccumulatesinformationderived
by theFDI function. Theprocessingof theindividual packetnominallyculminatesin the
writing of a sourcecongruentcopy of the receiveddata into a buffer in local processor
memorywhich providesan interfaceto theMessageSend-Receivetask(refer to Section
4.2.2.1). (There are certain error conditions where no data can be derived, and the
processingof "null" datapacketsdiscussedabovedoesnot result in theupdatingof the
MessageSend-Receiveinput buffer.)

If anerror conditionis detectedduringtheProcess_Packetprocedure,acheckis madeto
determineif a fault isolatedto an ICIS is not really the result of a channelfailure. As
documentedbelow,muchof theFDI processingof ICISdataandstatusrelieson theuseof
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the data exchangevoter hardware and accompanyingerror registers to detect non-
congruenciesacrosslayers and ICISes. Attributing the causeof a non-congruency
indication to a fault in an ICIS (i.e., therereally is non-congruentdataor status)canbe
confoundedby thefact thatachannelfailedduringthetimethatthedataor statuswasbeing
processed.This checkconsistsof calls to theFTPredundancymanagementservicesto
confirm the synchronouspresenceof a channelandconsistsof anactualvotedexchange
testandabbreviateddataexchangeerrorlatchanalysisto conf'n-mthatavotedexchangeof
congruentdatadoesnot setbits in theerror latches.A recordingof a fault isolatedto an
ICIS which is found to beconfoundedby achannelfailure is purged.No fault reportsare
loggednor areanyresponsesmade(i.e., updatesto statusvariablestomaskoutdatafrom
theICIS, or schedulingof self-tests).

If a new error condition is detected during the processing of a packet, responses are made

immediately within the packet processing inner loop of the ICIS_RM task. The status

variables indicating the fault status need to be updated immediately as their values will

determine which set of redundant copies of data and status will be eligible for use in

processing subsequent input packets. The Healthy_Layer or the Healthy_ICIS status

variables are updated when a layer or a total ICIS, respectively, is determined to have

failed. The response to a fault isolated to the region of a partial ICIS or one of the inter-

ICIS links (e.g., the ICIS seems to receive fault-free data on two out of three layers and

other ICISes receive fault free data on all three layers) is more complex. If there is only

one ICIS available and a partial ICIS failure is detected, then the data from the layer

involved in the fault will be marked "unavailable" for subsequent packet processing. Note

that the fault response in this case does not include any attempt to implicate the layer as

faulty as there is not enough information to do so. Another case in which the layer data is

marked "unavailable" is where two out of three ICISes receive faulty data from the same

layer while the non-faulty copy is in complete agreement with redundant copies received on

at least one other layer. Again, the network layer can not be presumed to be failed on the

basis of this evidence; more likely there is a problem in the inter-ICIS data links associated

with that layer. In other cases involving faults isolated to a partial ICIS region where there

is at least one other fault-free ICIS available to the FTP, all data from the ICIS with the

partial failure will be made "unavailable" for processing subsequent input packets. No

response is made when it is determined that a double simultaneous fault has occurred or

when the FTP sourcing the received packet sent confusing and non-congruent data across

two layers.

If any error condition is detected while processing an individual input packet, an error

report including the fault isolation information is passed along to the ICIS_Local Manager

fILM) task. This inter-task communication is implemented using a circular buffer structure

for passing the error reports and the setting of an event to trigger the execution of the ILM

task once the higher priority ICIS_RM task has finished its current execution wherein all
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currentlyreceivedinput packetsareprocessed.Thesubsequentactionstakenin response
to thedetectederrorconditionaremanagedby theILM taskandaredocumentedin Section
4.2.3.2.

When all the outstanding input packets have been processed, the First_Pack variable is

updated with the index of the last processed packet and the outer loop of the ICIS_RM task

comes back to the point where the task suspends itself.

4.2.3.1.1 Process: Packet Process
m

Input:
Redundant copies of individual input packets from IC network

Output:

Source congruent copy of input packet

Fault detection and isolation information

Description:

This process embodies the redundancy management functions related to the processing of

redundant data and status information associated with a single, received IC network packet.

The structure of this process is shown in Figure 4-14. The process is invoked from the

main loop of the ICIS_RM task for each new element of the input packet buffer determined

to have been "updated" by the ICIS instruction sequencer either in response to actual data

received from the network or to the mode switching anomaly previously described. This

process is responsible for:

1. determining upon which layers data was received,

2. analyzing the redundant byte count values associated with the redundant packets,

3. analyzing the redundant SDLC protocol status associated with the redundant packets,

4. analyzing the redundant data values associated with the redundant packets.

Each of these subprocesses is implemented as a separate subroutine which is only called by

the Packet_Process routine. It should be noted that subprocesses are invoked only

conditionally on the basis of the outcome of preceding subprocesses. For example, if the

subprocess responsible for determining upon which layer(s) data was received indicates

that data was not received on any of the three layers (i.e., this is a "null" packet resulting

for a ICIS unsolicited-to-solicited mode transition), then there is no need to perform any of

the other subprocesses. Also, the parameters used by a subprocess may be determined on

the basis of the outcomes of previous subprocesses. For example, if a layer is determined

to be faulty during the subprocess involving the analysis of byte count values, then the data

from that layer will not be used within the subprocess which does the voting/selecting of

the data values in forming a single, channel-congruent representation of the received data.
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Theoutputof thisprocessconsistsof anerrorstatusrecordidentifyinganyerrorconditions
detectedwhile processingthe current input packet, and a single channel-congruent
representationof the receiveddatawhich is conditionally placedin the MessageSend-
ReceiveInput Buffer. Theerror statusrecordis a functionof theerror detection results of

the byte count, SDLC protocol, and received data analyses and their inter-correlations.

Only the subprocess responsible for forming the congruent data representation updates the

Message Send-Receive Input Buffer.

PIO

determine which network layer(s) sourced data and do preliminary byte count analysis

?? number of active layers > 0 ??

yes

?? was an error condition detected in preliminary
byte count analysis ??

no yes

do complete byte count analysis

?? was a Double_Fault detected ??

yes no

analyze SDLC protocol error flags

?? was a Double_Fault detected ??

yes no

?? have _ error conditions been detected ??

III

no yes

correlate error information

?? are valid ICIS' > 0 and valid Layers > 0 ??

no 7es

form congruent data representaion and do data error analysis

Figure 4-14. Structure of Packet_Process

4-52



4.2.3.1.2 Process: Get_Active_Layers

Input:

Redundant copies of individual input packets from IC network

Indication of which network layers are non-faulty

Indication of which channels' ICISes are available.

Output:

Indication of which network layers sourced data for this packet

Fault status from comparisons of redundant byte counts .

Congruent byte count value for received packet (may be modified in later

processing of faulty packets)

Description:

This process is responsible for determining which, if any, layers sourced data for the

current input packet being processed. The need for this process arises from the fact that the

transmitting sites in the AIPS distributed system can be of mixed redundancy. A simplex

site will transmit data only on one layer whereas a triplex site will transmit on all three

network layers. The redundancy level of a transmitting site is not known a priori and must

be analytically determined on the basis of the redundant data received from the network for

each and every input packet. In addition, the possible "null" packet scenario resulting from

the unsolicited-to-solicited mode transition of the ICIS must be detected by the

Get_Active_Layer process. The process, in this "null" packet case, returns an indication

that zero layers have active data, resulting in the termination of any further processing of

the current input packet.

The determination as to whether a network layer sourced data for a particular input packet is

based upon an analysis of the byte count value associated with each copy of the received

input packet. While receiving each redundant data packet from the separate network layers,

the ICIS hardware maintains a count of the number of bytes of information associated with

each incoming SDLC packet. At the completion of an ICIS INPUT instruction, the

independent byte count values associated with the separate layer interfaces are written into

the ICIS dual-port memory as part of the recorded input packets' headers. When an

INPUT instruction is completed and no SDLC packet data was received for a particular

layer, then the byte count value recorded is 4 - representing only the number of bytes in an

ICIS-generated header for a received packet. (This header includes the byte count value,

status values associated with the hardware device performing the SDLC protocol, the ICIS

Chain_Status_Register value, and a time tag value.)

For each fault-free network layer, the redundant byte counts associated with valid (i.e.,

fault-free channels and ICIS hardware) ICISes are voted/selected. The "LMN space

voter/select" hardware built into the AIPS hardware is used for this operation. A particular
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layeris consideredto be "inactive"(i.e.,did notreceiveinputfor thiscurrentinput packet)
only if thevoted/selectedbytecountfor the layeris avalueof either0 or 4 by consensus.
That is, all valid ICISesmusthaveseennodatasourcedon the layer beforeit is marked
inactive. Thevotedbytecount for a layermaybe0 or 4, but if avotererror indicatesan
incongruousvalueacrossthechannelsthenthelayer is still considered active so that its data

will be included in the more elaborate fault detection and isolation processing of the byte

count, SDLC protocol, and data values which follows.

Note that this same processing of the redundant byte count values is needed to derive a

single, channel-congruent byte count value used in processing the data within the input

packets. Thus, instead of doing the same vote/select operations on the byte count values

for both determining which layers are active and to determine "the real" number of data

bytes received, both pieces of information are gathered at the same time within this process

if possible. The byte count values voted/selected across the channels for each layer are

compared against one another. Under no-fault conditions, all redundant byte counts will be

equivalent and the congruent byte count value is returned for use in all subsequent

processing of the input packet. The detection of any byte count inequalities or byte count

range check failures results in the return of a error detection flag that will be used to invoke

a more complete analysis of the byte counts to localize the fault.

4.2.3.1.3 Process: Byte_Count_Analysis

Input:

Redundant copies of individual input packets from IC network

Indication of which network layers have valid data

Indication of which channels' ICISes are available

Output:

Channel-congruent representation of byte count for input packet

Byte Count Fault Detection and Isolation record

Description:

This is a subprocess called by the Packet_Process process only when the preliminary

analysis of the redundant byte count values associated with an input packet indicates that

there is a fault to be more completely analyzed and that the "real" number of bytes received,

as determined in the preliminary analysis, may need to be re-evaluated on the basis of the

results of this fault isolation operation. A byte count is considered erroneous and indicative

of a fault if it deviates from the majority byte count value (i.e., the byte count value

observed most frequently in the set of redundant input packets from the fault-free layers

and ICISes). This process detects erroneous byte counts and locates them in the two-

dimensional space formed by the crossing of the available network layers and the available

redundant ICISes of the receiving site. The number of "minority" byte count values and
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theirlocationin this "Layerx ICIS" matrixareusedfor isolatingthefault to afault isolation
region. This processis also responsiblefor detecting the case in which a double
simultaneousfault is presentandthecasewherethereis nosinglemajority bytecountbut
twobytecountvaluesare"TIED" in termsof frequencyof occurrence.

Thepossiblebytecounterror statesreturnedbythisprocessare:

NONE-- nobytecounterrors

DOUBLE_FAULT -- indicative of double simultaneouserror condition; no further
processingto beappliedto this inputpacket

POINT -- one minority byte count found, or 2 out of 3 redundantbyte counts for a
particularlayerareminorities

TOTAL_LAYER -- multipleminoritybytecountsinonelayer,thelayerwill notbeused

TOTAL_ICIS -- unanimous,multipleminority bytecountsin onechannel'sICIS; thedata
from this ICIS will not beused

TIE_LAYER -- all bytecountswithin a layerarethesameyetdifferentfrom thebytecount
of a secondlayer which also hasconsistentbytecounts;to be resolvedwith SDLC error
analysis

-TIE_ICIS-- all bytecountswithin achannel'sICIS arethesameyetdifferentfrom thebyte
countof a secondchannel'sICIS which alsohasconsistentbyte counts; to be resolved
with SDLCerroranalysis

This informationwill be latercoordinatedwith the fault statusassociatedwith theSDLC
protocol analysis and the analysis of the actual packet data before a conclusive
determinationof afault locationis made.

The bytecount analysisalgorithm is summarizedin Figure 4-15 anddiscussedin detail
below.

. The "Layer x ICIS" matrix of byte count values is formed by reading the individual

byte count values stored in the header of each redundant copy of the input packet being

processed. This data is read in a "single channel select" mode from only those layers

and ICISes currently considered to be providing valid input packets. As the byte count

values are read, a tabulation of the frequency of occurrence of each distinct byte count

value is maintained.
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Figure 4-15. Algorithm for Byte Count Analysis

2. The frequency of occurrence data is scanned to determine the majority byte count value

and to detect a TIE byte count situation.

3. A preliminary check of the frequency of occurrence of the majority byte count is made

to detect a double-fault case. The threshold for the frequency of occurrence is a

function of the number of current valid layers and ICISes. For example, if there are

currently three valid layers and three valid channels (i.e, a triplex is receiving a

transmission from another triplex and no previously detected IC error conditions have

been noted), then at least six out of the nine redundant input packets must have the

same byte count or there is a double simultaneous fault condition present in the system.

. If there is no TIE condition, then the byte count status m be returned is formed

according to the location of any minority byte count values in the "Layer x ICIS"

matrix. Obviously, if there are no minority byte count values then a byte count status

of NONE is returned. If there is only one minority byte count value, then a POINT

byte count status is returned along with the identification of which ICIS and layer are

involved. The determination of the returned status is more complex when there are

multiple minority byte count values involved. If all the dissenting byte counts are

located in the same layer then either a TOTAL:LAYER status is returned when all

redundant byte counts for packets received on that layer are minorities, or a POINT

status is returned in the case where 0nly two out of three of the byte counts for the layer

are minorities. If all the dissenting byte counts are located in the same ICIS, then a
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TOTAL_ICIS statusis returned.If all minoritiesarenot locatedeitherall in onelayer
or all in oneICIS, thenaDOUBLE_FAULT statusreturnismade.

. If a TIE condition is indicated, a determination must be made as to whether the TIE is

between two sets of byte counts distributed evenly between two layers (TIE_LAYER),

or between two ICISes (TIE_ICIS). Any other distribution of byte count values is

considered indicative of a DOUBLE_FAULT condition. In the case of a TIE, then both

byte count values are range checked to determine if they are legal byte counts. If one

value is determined to be illegal and the other is legal, the legal value is considered to be

the "real" byte count to use. -

4.2.3.1.4 Process: SDLC_Error_Analysis

Input:

Redundant copies of individual input packets from IC network

Indication of which network layers have valid data

Indication of which channels' ICISes are available

Output:

SDLC protocol error detection and isolation record

Description:

This subprocess is responsible for analyzing any SDLC protocol error indications

associated with the input packet currently being processed. For each redundant copy of the

input packet, a single bit of information is stored in the header of the input packet which

indicates whether or not the hardware device implementing the SDLC protocol detected an

error while receiving the packet. These protocol errors consist of:

. Cyclical Redundancy Checks (CRC) - The transmitting SDLC device forms a CRC

value for the outgoing packet and appends the value to the end of the packet. The

receiving SDLC device performs the same CRC operation on the incoming packet data.

If the determined CRC value does not match the value appended to the packet, then

there was a transmission error.

2. Data overrun - The receiving SDLC device was not read quickly enough by the

controlling ICIS hardware to keep up with the incoming SDLC serial bit stream.

. Format error - The incoming bit stream does not conform to the SDLC protocol (e.g.,

no closing flag detected after the maximum possible number of data bytes per packet

was received).
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Thesethreeerror conditions areORedtogetherinto one statusbit (RCVR_ERR)in the
SDLC device'sInterface_Register(IR), a copy of which is storedin the input packet's
headerby theICIShardwareat theconclusionof anINPUT instruction.

Theanalysisprocessconsistsof first readingall redundantcopiesof the RCVR_ERR bit

from the input packets associated with the currently valid layers and ICISes. These reads

are performed with the "select single channel" mode (i.e., an implicit single-sourced

exchange is performed). The number of packets with protocol error indications is noted as

well as the location of the faulty packet(s) in the "Layer x ICIS" matrix. The SDLC error

status returned is a function of the number and location of packets with protocol errors:

NONE -- no SDLC errors detected

DOUBLE -- multiple SDLC errors detected and they aren't either all in one layer or all in

one ICIS; further processing for this packet is cancelled

POINT -- single SDLC error detected or 2 out of 3 packets for a particular layer have

errors; the identification of the layer and ICIS (or ICISes) involved is also returned

TOTAL_LAYER -- multiple SDLC errors all found within one layer

TOTAL_ICIS ,- multiple SDLC errors all found within one channel's ICIS

The SDLC analysis algorithm is summarized in Figure 4-16.

0

,..1

>1

NO ERROR

POINT FAILURE
FOR SINGLE LAYER, ICIS

LOGGED

IF ALL SDLC ERRORS IN ONE LAYER

THEN TOTAL_LAYER
ELSIF ALL SDLC ERRORS IN ONE ICIS

THEN TOTAL_ICIS
ELSE

DOUBLEFAULT

4.2.3.1.5

Input:

Figure 4-16. Algorithm for SDLC Analysis

Process: Correlate Error Information
m Q

Error status from Byte_Count_Analysis

Error status from SDLC Error_Analysis
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Output:

Error detection and fault location record

Indication of from which layers and ICISes to process data

Final byte count value (following resolution of TIE byte counts)

Description:

This subprocess is called from within the Packet_Process code only if an error detection

indicator has been set during either the processing of the byte count values or the SDLC

error flags. The subprocess is responsible for correlating the fault location information

returned from the byte count and SDLC error processing for the current input packet. The

execution of this subprocess provides an updated fault location record which is based upon

the composite information provided by the byte count and SDLC error information. It also

provides an updated indication of which layers and ICISes are to be used in forming the

single, congruent representation of the redundant data. An additional operation provided

by this subprocess is the conditional resolution of the ambiguous TIE byte count situation

where the inclusion of the SDLC error information may help in determining which set of

packets with one particular byte count value might be faulty.

The following two tables (Figures 4-17 and 4-18) list the actions taken depending upon the

byte count error status and the SDLC error status. Figure 4-17 indicates the logic used in

deactivating channels or layers based upon these error status values. Note that the

deactivation of a channel or layer refers to the change in status regarding the valid channels

and layers to be used in forming congruent data. That is, if a channel or layer is

deactivated, its data is not used in the subsequent vote/comparison process. Figure 4-18

lists the rules used to determine a collaborative error status based upon both the byte count

status and the SDLC status.

In attempting to understand the derivation of the actions specified in these two tables,

consider two transparent sheets of plastic each of which has a 3 x 3 matrix inscribed to

represent the "Layer x ICIS" matrix. One of the sheets will represent the fault status

returned by the byte count analysis and the other indicates the fault status returned by the

SDLC error analysis. A fault is indicated by darkening the appropriate part of the matrix

associated with the fault's location:

-- a point fault has only one or two elements of the matrix darkened (all in same column)

-- a total ICIS fault has a complete column darkened

-- a total layer fault has a complete row darkened

The two transparencies are overlaid forming a single matrix. The indicated faults (i.e.,

darkened areas) of the Composite are localized with the same basic rules used in the original
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bytecountandSDLC error analysis. All errorsmust belocalizedeiIherto oneandonly
onerow or column(i.e.,onelayeror oneICIS); elseadoublefaultconditionis indicated.

Thehandlingof thePOINT-typefault indicatorsisrelativelymorecomplexthantheother
types. A POINT fault is indicativeof eitherapartial ICIS failureor a failure in the inter-
ICIS communication links usedto distribute incoming network data to the redundant
ICISesof anFTP. Thus,aPOINT-typefailuremayinvolvemorethanonechannel'sICIS
in thecaseswhereoneof the inter-ICISlinks is faulty within thedaisy-chainbeforetwo
ICISesreceivethedata,butat leastoneICIS receivesfault-freedataonthatparticularlayer.
Whentwo ICISesaxe involved and there are at least two fault-free network layers available,

the layer is deactivated although the layer is not considered faulty (i.e., there is nothing the

Network Manager could do to alleviate this problem). When two ICISes are involved and

there is only one layer available, then two ICISes are deactivated and the site is left to

receive only one copy of the input packet. If only one channel's ICIS is implicated in the

fault, then whether the layer or the ICIS is deactivated must be decided. When there is

more than one ICIS available the ICIS is deactivated; otherwise the layer is deactivated.

4.2.3.1.6 Process: Get_Congruent_Data

Input:

Redundant copies of individual input packets from IC network

Indication of which fault-free layers sourced data
Indication of which channels' ICISes are available

Byte counts for this input packet

Output:

Error detection and fault location record

Single, congruent representation of received packet data

Description:

This subprocess attempts to produce a single, channel-congruent representation of the data

included in a received packet. When miscomparisons in the redundant copies of data are

detected, a detailed analysis of the miscomparisons is invoked for fault isolation purposes.

An additional function provided by this subprocess is the checking of the actually observed

network layer activity against the expected layer activity as determined by the layer

redundancy encoding placed in the data packet by the transmitting FTP. This check is done

to provide a mechanism to determine when data failed to show up on a particular layer

when it should have (i.e., there is a layer fault). The check is made only after a congruent

representation of the layer redundancy encoding is formed.

4-62



TheAIPS hardwaresupportfor performingvote/selectoperationsacrossredundantlayers
within a single ICIS and for performing vote/select operations across redundant ICISes is

used extensively in this subprocess. Only data from layers and ICISes considered to be

fault-free is included in the vote/selects. For example, when a triplex site receives a

transmission from a simplex site on one layer, the data is selected only from that single

layer within each ICIS and then voted across the three channels of the receiving FTP. In

the case where a triplex transmits to another triplex the data is first voted across all three

layers within each ICIS and the resulting voted values are again voted across the channels.

(Refer to Figure 4-19, which indicates the types of votes/selects performed as a function of

the number of valid layers and valid ICISes involved in the current-input packet.) Note that

both the vote and the select operations across channels imply that a data exchange function

is executed and the resulting data is guaranteed to be congruent across the channels. The

vote/selects are done implicitly during the movement of the data from the ICIS dual-port

memory into the local processor memory. The processed packet is stored as one element in

the Message Send-Receive Input Buffer (refer to Section 4.2.2.1).

There are error latches associated with both the voters used to operate on data across layers

and the voters used to operate on data across channels. These latches are used to

accumulate status indicative of miscomparisons in the data moved out of the ICIS dual-port

memory. The error analysis logic is summarized in Figure 4-20. The results of this error

analysis are combined with the error detection and fault isolation information already

accumulated during the processing of this packet (i.e., from byte count and SDLC error

analyses) to determine a final error status and fault location record for this processed

packet.

Once the data has been made source congruent, the layer redundancy encoding is extracted

and compared against the observed layer activity associated with this packet reception. If a

layer was expected to source data for this packet according to the layer redundancy

encoding but no data was detected on this layer, then the layer is flagged as faulty. This

information is integrated into the f'mal error status record.

Only if the f'mal error status accumulated after all of this processing indicates that there is no

double fault condition and no unresolvable ambiguity in the received data, is the new input

data passed to the Message_Send_Receive task by updating the FDIR_index in the

Message Send-Receive Input Buffer. An event is set to signal the Message_Send_Receive

task that new input is available for processing. If no valid data can be passed, the buffer

index is not updated and the Message_Send_Receive task is not notified.
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Figure 4-19. Votes/Selects Used for Layer/Channel Combinations

4-64



NUMBER OF CHANNELS WITH MISCOMPARES ACROSS LAYERS

<

[-

,d

0

N

Z

1 2 OUT OF 3 ALL

IF NO[NTERCHANNELERRORS
THEN

PARTIAL_lOS OR
INTER-ICISLINKFAILURE

ELSIFBOTHINTRA-ANDINTER-
CHANNI_ERRORSPOINTTO

SAMEICIS
THEN

ICISFAIL
_.SE

DOUBLEFAULT

IFNO IN'IERCHANNEL
ERROR

ORIN'IERCHANNELERROR
POINTSTO SAMECHANNEL
AS DOESINTRACHANNEL
ERRORTHEN

IOS FAULT

ELSE
DOUBLEFAULT

IFNO INTERCHANNEL
ERRORS

THEN
LAYERFAILURE

ELSE

DOUBLEFAULT

DOUBLE FAULT

IFNO INTERCHANNEL
ERRORS

THEN

SOURCE_GPCFAULT
_SE

DOUBLEFAULT

DOUBLE FAULT

Figure 4-20. Analysis of Inter-Channel and Intra-Channel Votes

4.2.3.2 ICIS_Local_Manager (ILM) Task

The functions provided by this task include (1) managing responses to detected error

conditions, (2) managing responses to updated network layer status received from the

Network Manger, (3) providing the capabilities to re-initialize an ICIS, and (4) managing

the local retry self tests associated with the ICIS hardware. The task is executed both on an

"on-demand" basis in response to an event being set by one of several other tasks

requesting services, and on a periodic basis when there are self tests to be executed

periodically to check if a previously failed resource has recovered. The ILM task can be

activated on demand for the following reasons:

1. the ICIS_RM task reports the detection of a new error condition,

2. the FTP redundancy management software requests that an ICIS be re-initialized,

3. a message has arrived from the Network Manager task.

These relatively diverse functions could have been partitioned into separate tasks but were

not due to considerations of minimizing the system's tasking overhead and complexity. As

implemented, the task's body is fairly simplistic. The four main functions provided by this

task have been individually encapsulated within separate procedures. The main loop of the
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ILM taskincludesa call to eachof theseprocedures.Eachprocedurechecksto seeif its
function requires action at the current time and, if so, it doeswhat is neededbefore
returning. Eachfunctionis givenanopportunityto executeeachtimethetaskis scheduled
to execute.

4.2.3.2.1 Managing Responses to Failures Reported by ICIS_RM Task

The ICIS_RM task performs fault detection and isolation functions on the basis of the

received communication packets that it processes. In response to a detected error

condition, it must immediately make the responses required to permi't continued processing

of subsequent input packets (e.g., mask out data from a faulty ICIS). However, there are

other less time-critical responses which can be deferred. The ICIS_RM task notifies the

ILM task of a new fault condition by calling the ICCS_RM_Failure_Report procedure

which provides the inter-task communication and synchronization support required to allow

the ILM task to manage these deferred responses. The Check for Failure_Report

procedure is called from within the main ILM task loop to see if there are any new failure

reports enqueued for processing. This procedure manages this processing which includes

any further fault isolation functions, fault logging, and scheduling of retry self tests.

Process: ICCS_RM_Failure_Report

Input:
Fault isolation information from ICIS_RM task

Output:

Entry in queue of fault reports

Description:

This process provides a procedure to be called by the ICIS_RM task when it needs to pass

new fault isolation information to the ICIS_Local_Manager task. The information is

enqueued in a circular buffer structure and an event is set which will result in the execution

of the ILM task as some later time. The higher priority ICIS_RM task will not be blocked

by the inter-task communication process.

Process: Check_for_Failure_Report

Input:
Fault isolation information from ICIS_RM task

Output:

Error logging information (not currently implemented)

Additional enla'y in list of requested self-tests to be executed

Conditionally, a message to Network Manager if layer failed
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Description:

This process is responsible for dequeueing any failure reports posted by the ICIS_RM task

as a consequence of error detections made while processing input packets. Responses to

the failures are enacted here with less priority than in the actual ICIS_RM task which has

the more time critical responsibility of processing input packets as quickly as possible. The

check for new failure reports consists of a comparison of two indices which are part of a

FIFO structure used for inter-task communication of the reports.

The enacted responses are conditional on the fault isolation information passed in the failure

report. In response to a layer failure, a self test is executed to deternaine whether the fault is

located between the FTP's ICISes and the root node for the layer or is located elsewhere in

the layer. This finer localization of the fault is important in that a fault in the ICIS-root

node interface can not be circumvented by an intervention of the Network Manager. On the

other hand, the Network Manager may be able to correct a fault located elsewhere in the

layer by switching inter-nodal links. The self test used to differentiate these two fault

conditions involves the execution of an ICIS instruction chain which sends a message to

the root node on the layer in question asking the node to respond with a status message.

The returned status message is checked for syntactical correctness. A valid status message

reception is taken to mean that the root node interface is fault free and it is assumed the

layer problem is located elsewhere and will be handled by the IC Layer Manager for that

layer. A fault in the root node interface is assumed if no valid status message is returned.

In this case, an entry is added to a queue of self test requests managed by the

ICIS_Local_Manager task which executes the retry self tests to determine when faults

associated with the local ICIS hardware have gone away. This request will be for a

periodic check of the root node interface.

In response to fault isolation information passed in the failure report indicative of a total

ICIS or a partial ICIS fault, an entry is made requesting retry self tests to determine when

the particular type of fault is no longer present. The retry self tests for these types of

failures also consist of attempts to "echo" transmissions off of the root node in attempt to

determine if the local ICIS hardware is capable of transmitting and receiving on a specific

layer or layers. Refer to Section 4.2.3.2.4 for a description of the retry self-test process,

the types of self tests executed for the various fault conditions, and the criterion used to

determine when a total or partial ICIS fault is recovered.

If the list of retry self tests happens to be empty when this new entry is added, a new task

scheduling procedure call is made to the run-time system causing the ILM task to be

scheduled for execution on a periodic basis. The task will be run at least every 2 seconds

when there is a retry self test to be run. Execution of the task on an "on-demand" basis via

the setting of an event remains in effect at all times.
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4.2.3.2.2 Managing Layer Status Updates from Network Manager

Process: Check_For_Layer_RepairReport

Input:
Message from Network Manager received via ICCS

Output:
Updated layer fault status

Description:

This provides an ILM task entry point for receiving communicated messages from a

Network Manager indicating the recovery of a previously failed layer. This process is in

the form of a procedure which is called on each iteration of the main ILM task loop to check

for an updated layer status. Since the location of the Network Manager can be on any FTP

in the distributed system, ICCS must be used for inter-task communication. An initial

check is made to the ICCS interface available for polling for new messages. If a new

message is available, it is evaluated and the status variable maintained by the ICIS RM

software reflecting the fault status of each layer is updated if the Network Manager says

that a layer has been repaired. The updated status variable will immediately affect all ICIS

RM operations (e.g., upon which layers data is expected to be received).

4.2.3.2.3 Managing Requests for Re-initialization of ICIS Hardware

The software responsible for managing the redundancy associated with the core FTP needs

to be able to command the re-initialization of the ICIS hardware following the restoration of

a channel which has for whatever reason been removed temporarily from the configuration

of channels composing the FI'P. The re-initialization and alignment of the state of the ICIS

hardware could be done within the context of the task managing the re-alignment of the

core FTP hardware. However, it was decided not to include the additional time required to

initialize this ICIS hardware in the total channel re-alignment time, since the channel re-

alignment is done while application tasks are suspended. Furthermore, the time to do the

ICIS re-alignment is not time deterministic, as will be shown in the following description

of the Align_ICIS process. Therefore the re-alignment is deferred until the lower priority

ILM task can process the ICIS alignment request made by the core FTP redundancy

management task responsible for managing the re-initialization of FTP channels.

Process: Request_ICIS_Align

Input:

Identification of which channel's ICIS is to be initialized

Output:

ICIS alignment request
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Description:

This process enqueues a request by the core FTP redundancy management software to have

the ICIS of a particular channel re-initialized. This process is in the form of a subroutine to

be called directly by the FTP redundancy management software. The subroutine hides the

implementation of the inter-task communication mechanism from the calling task. The

subroutine sets an event which will invoke the lower priority ICIS_Local_Manager task to

do the actual ICIS alignment when it eventually gets a chance to run.

Process: Check_For_Align_Request

Input:

Request to align the ICIS of a specified channel

Output:

None

Description:

This process is called by the main loop of the ILM task body and checks to see if there are

any outstanding requests to align an ICIS. When needed, the process dequeues any

available requests made from the FTP redundancy management software to have the ICIS

of a particular channel re-initialized. The Align_ICIS process is invoked to actually

perform the hardware re-initialization.

Process: Align_lCIS

Input:

Identification of ICIS to align

Output:

Update to variable indicating alignment status of ICISes

Index of "current" buffer used for receiving input packets

Description:

This process is responsible for bringing a specified channel's ICIS into an aligned state

with a currently aligned ICIS or ICISes such that all ICISes will synchronously receive and

transmit data on the IC network. Much of the state of the ICIS hardware is statically

initialized. The more problematic state variables, in the context of re-alignment, are those

which dynamically change during the course of receiving and transmitting data. One

approach to this problem would be to stop all ICIS operations and do a complete alignment

(i.e., replacement of state variables with voted exchange values) of all ICIS state variables
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in a fashion similar to the alignment of a channel's processor. However, it is desirable to

minimize the disruption of normal ICIS communication activities imposed by the alignment

operation and the alignment of the complete state of an ICIS would take tens of

milliseconds in its current hardware implementation.

The approach taken to this alignment problem is to align the static variables of the ICIS

totally asynchronously to the operations being performed by the ICIS or ICISes already

aligned. This alignment process takes place within the context of the ICIS_Local_Manager

task while the reception of input packets takes place within the context of the ICIS_RM

task, and the execution of ICIS operations to transmit data is performed within the context

of the task sending the data out on the network (e.g., the Message Send-Receive task).

Once the static variables have been initialized, the dynamic variables are initialized while the

ICIS is in a known quiescent state - no data is coming into the ICIS and it is not executing

instructions to transmit data. Also, the number of dynamic state variables to align is

minimized. Instead of aligning all of the buffer space allocated for storage of the raw,

redundant input packet data, only the "unsolicited chain pointer" which points to the current

ICIS instruction of the chain of instructions managing the reception of input data and the

Last_Pack variable in the ICIS dual-port memory which indicates the last input packet

received are aligned. This scheme requires coordination between the ICIS_RM task, which

is processing the input packets, and the ICIS_Local_Manager task, which is performing the

alignment, so that the resulting non-congruent data across ICISes is not misinterpreted as a

fault indication. The Align_ICIS process provides information available to the input packet

processing software to determine which input packets are expected to be congruent and

which are not necessarily congruent because they were received before the alignment of all

currently aligned ICISes. It should be pointed out here that there are other dynamic state

variables associated with arbitration for the network and executing solicited chains of

instructions (e.g., the state exchange voter masks involved with the inter-channel exchange

of states of the polling sequence). These variables, however, are initialized "on the fly"

each time a new network polling sequence is started before the execution of a solicited

chain and do not require alignment here.

It must be guaranteed that the alignment of even these dynamic state variables related to the

reception of data does not occur at a point in time just as new input packets arrive. The

variables are aligned during a short window of time following the successful acquisition of

the network by the FTP in which the ICIS alignment is taking place. Network possession

guarantees that no other FTP in the system can be transmitting data to this FTP. The

acquisition of the network is made in the normal manner, i.e., by instructing the ICIS

hardware to go through a polling sequence and then execute a specified chain of

instructions. (This polling operation is not time-deterministic and introduces variability into

the total time required of the Align_ICIS process.) The ICIS instructions cause a

continuous stream of "flag" characters to be sourced on the network and thereby assure

continued network Possession. (The IC network protocol is such that a 512 microsecond

period without network activity is an indication that the network is "idle" and therefore a
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newarbitrationsequencecanbegin. Thecurrentimplementationof theICIS alignment
softwarewill alwaysguaranteethattheamountof timerequiredto possessthenetworkto
performthealignmentof thedynamicvariablesis muchlessthan512microsecondsandthe
"flagging" is not necessary.However, the amount of code executedduring network
possessioncanbe reducedandthis implementationwill continueto work.) Theminimal,
critical alignmentcodeis executedwhile the FTPhasnetworkpossession;then theFTP
immediatelyreleasesthenetwork allowing any waiting sitesto begin a new arbitration
sequence.

BeforetheoverallICISalignmentprocessis started,acheckis madeto seeif thechannelin
which thespecifiedICIS residesis currentlyin synchronousoperationwith themajority;
theICIS alignmentis only attemptedif thechannelis capableof synchronousoperation.
Theinitializationof thestaticstatevariablesproceedsin four steps:

1. The chainof ICIS instructionsrequiredto executewhile theFTP maintainsnetwork
possessionsuchthatdynamicstatevariablesarealignedis initialized in theICISdual-
port memory. This simple chainconsistsof an infinite loop in which SDLC "auto
flags"areturnedon.

2. The chain of ICIS instructions required to executethe ICIS "retry" self tests is
initializedin ICIS dual-portmemory.

3. Thechainof ICIS instructionsforming theunsolicitedchainusedwhile theICIS is in
unsolicitedmodeandsupportsthereceptionof inputpacketsis initialized.

4. TheICIS hardwarecontrolregistersof theICIS beingalignedareinitialized suchthat
the ICIS can begin to executetheunsolicitedchain of instructionsand canbegin to
receiveinput packets.Notethattheregistersareloadedwith constantinitial valuesand
notwith valuesresultingfrom avotedexchangeamongthechannels.

If the ICIS being alignedis the only ICIS availablein the FTP either becausethis is a
simplexprocessingsiteor becauseof massiveICIS failuresat anon-simplexsite,theICIS
alignment processconcludesat this point with the starting of the execution of the
unsolicitedchainusedto receivepackets.

Otherwise,theFTP'sICIS complexmustgetnetworkpossession,align thedynamicstate
variables,andbring theICIS into synchronousoperationwith thealreadyalignedICIS or
ICISes(i.e.,it will placenewinput packetsin thesamedual-portmemorybuffer andwill
havethesameLast_Packvalueto indicatewhichwasthelastpacketreceived).Thealigned
ICIS isqueriedto determinewhenit is notexecutingasolicitedchain. Whenavailable,the
sequenceris directedto poll for networkpossessionandto executethe "dummy"null loop
chain. After thecommandis issuedto thesequencerto poll for networkpossession,the
IOP must begina poll of the ICIS Chain StatusRegisterto determinewhen the ICIS
actually hasobtainednetwork possession.Oncenetwork possessionis confirmed, the
unsolicitedchainpointerfrom theICIS or ICISesalreadyalignedis copiedinto thechain
pointer for the ICIS being aligned. A similar alignment operation is made for the
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Last_Packvariablealongwith a recording of the variable's current value to be used by the

ICIS_RM task for determining when the newly aligned ICIS should have congruent input

packets. A status variable is updated to indicate that the new ICIS is officially aligned. The

processor then writes directly to ICIS control registers to shut off the "auto flagging"

activity, to release the network, and to transition the ICIS back to unsolicited mode. Note

that the execution of this "alignment" solicited chain is no different than the execution of

any other chains and that all the error detection checks associated with executing a chain

(e.g., check for time outs waiting for the sequencer to become available to execute a chain)

are made.

4.2.3.2.4 Managing Retry Self-Tests

It is assumed that the detected error conditions associated with the IC hardware local to a

FTP (e.g., total ICIS, inter-ICIS links, interface between ICIS and layer root node) may be

transient in nature. The benefit of being able to recover from transient faults is increased

communication reliability. Retry self tests have been developed to determine if a previously

failed resource is usable at some later point in time. Following the recording of a fault by

the ILM task, the faulty resource is retried periodically via one of these self tests to

determine if it is again fault-free. If the test results indicate that the resource is fault-free, it

is again used for normal communication activities. Note that the implementation supports

multiple, simultaneously outstanding faults in the IC hardware complex local to a FTP.

Process: Run ICIS Retries
m w

Input:

List of records indicating current faulty ICIS resources

Output:

Modification of status variables if resource recovered

Description:

The Run_IClS_Retries process manages the self-test retries to determine when a faulty

ICIS resource has recovered. The implementation supports the management of multiple

faulty resources at the same time. The term "resource" refers to a fault isolation region of

either a total ICIS, a partial ICIS, or the interface with the root node. Recovery of a layer

fault is managed by the Network Manager.

The execution or retry self-tests associated with a particular fault are performed at time

intervals which are exponentially lengthened as the self-tests fail to indicate a recovery.

That is, less and less processor and ICIS throughput is dedicated to checking on the

recovery status of a resource as time goes on following the initial error detection. The

current implementation has the initial retry interval set for 2 seconds and the maximum retry
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interval limited at5 seconds.Theoperationsperformedduringthecourseof a self-test,the
criterion for recovery,and the responsesmadeto a recovery all dependupon the fault
isolation region associatedwith the fault, i.e., total ICIS, partial ICIS, or root node
interface. In all cases,an entry in the list of outstandingfaults is maintainedfor the
particularfault until it is deemedrecovered.If arecoveryis detectedfor theoneandonly
outstandingfault recordedin the list of faultsmaintainedfor managingtheretry self tests,
thetaskschedulingparametersfor theILM taskareupdatedsuchthatthetaskis no longer
scheduledon aperiodicbasisbutonly "on-demand."

Total ICIS Fault

The retry self-test associated with a total ICIS fault is executed only if the corresponding

channel is in synchronous operation. The ICIS to be tested is f'trst initialized using the

standard Align_ICIS process. For each of the three layers on which it is expected that this

FTP can both transmit and receive, a self-test solicited chain is executed. Each chain

executes the appropriate OUTPUT and INPUT instructions for getting status from a layer's

root node to the FTP. Each channel's ICIS should receive a copy of the node's return

status. Each redundant status packet is individually validated and indicates which channel's

ICIS passes the test. The criteria for considering a total ICIS recovered is:

1. the ICIS can transmit data to and receive data from the root node on the layer which it,

the ICIS, physically transmits on, and

2. the ICIS is at a simplex FTP site and it can pass the self test on at least one layer, or it is

not a simplex site and it can pass the test on more than one layer.

When these criteria are met, the recovered ICIS is again aligned and its "health" status

variable is changed to non-faulty; the ICIS will be included in other ICIS RM operations

such as receiving and transmitting data.

Parti_ ICIS Fault

Here it is assumed that a fault is localized to only an ICIS subsection associated with the

reception of data on a single layer, or the fault may be associated with the inter-ICIS links

used to relay layer data from one ICIS to another in the same FTP. The retry self test

consists of the transmission of a status request message to the root node on the affected

layer. If only one ICIS is affected by the fault, it must be able to receive a valid status

message from the root node before the ICIS is considered to be recovered. If two ICISes

are affected, both must pass the self test before a recovery is declared. The recovery

response made depends upon which type of reconfiguration response was made by the

ICIS_RM task when the fault was initially localized. Either the ICIS involved with the

fault was marked as not usable or the layer was marked as not usable. The type of initial

reconfiguration response is recorded in the fault entry on the list maintained by Run_

ICIS_Retries. If the ICIS was made unavailable it is reinstated after an alignment operation
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isperformed. If thelayerwasmadeunavailable,it is againmadeavailable by updating the

appropriate status variable.

Root Node Interface Fault

The retry self-test for a root node interface fault consists of an attempt to transmit a "give-

me-status" request to a single layer's root node and then attempt to receive a valid status

packet from the node. If any channel's ICIS successfully receives a valid return status

packet, then the interface fault is judged to be recovered. The status variable associated

with the health of layers is updated when a recovery is detected; the layer will be included

in all ICIS RM operations once again.

4.2.3.3 Starting Solicited Chain

The ICIS hardware redundancy is not completely transparent during the processes of

arbitrating for network possession and the execution of instruction chains in the solicited

mode. ICIS control registers and a layer redundancy status value in all communicated

packets must be dynamically updated just before every network arbitration and solicited

chain execution sequence. The registers and status value axe updated on the basis of the

currently known layer, ICIS, and channel redundancy levels. This redundancy

management support is required for fault-free IC communication.

This redundancy management software also provides error detection functions. ICIS status

is analyzed in an attempt to detect faults associated with network arbitration and the

execution of solicited chains.

Process: Start Solicited Chain
m

Input:
Address of solicited chain to be executed

Output:
Retttrn status indicating error detection results

Description:

The Start_Solicited_Chain process is multi-faceted in terms of the required functions that it

supports. It manages the hardware redundancy involved in arbitrating for the network and

in executing solicited chains. It performs error detection functions related to the execution

of solicited chains where data is transmitted on the network. It provides a limited amount

of fault recovery functionality in the sense that it will invoke the "possession default

recovery" process when a possession default state exists. And finally, the process

synchronizes the attempts made by multiple tasks to execute solicited chains.
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This process is embodied in a procedure with one input parameter - the address of the

solicited chain to be executed. The procedure is called after the solicited chain and any

output packet data have been written in the ICIS dual-port memory. After performing a

range check of the start address parameter, the process of executing the chain is begun. A

loop of code is executed repeatedly with each iteration consisting of three steps: (1) the

determination of the appropriate values for certain ICIS control registers, (2) a read of the

Chain_Status_Register (CSR) to determine if there is still a solicited chain in progress, and

(3) a conditional updating of control registers and the commanding of the ICIS sequencer to

execute the solicited chain if the previous chain has completed. The CSR value read also

contains bits of information indicating the presence of possession_default, poll tx fail, and

data tx_fail error conditions. These error bits are checked on each loop iteration.

Execution of the loop continues until:

1. the new chain can be started with no error conditions noted, or

2. an error associated with the previous solicited chain execution is detected (will still

attempt to start this new chain), or

3. a time limit expires before the previous chain completes.

Each iteration of the Start_Solicited_Chain loop consists of the following operations:

II A determination must be made as to which redundant ICISes will be instructed to

execute the chain and from which set of ICISes read accesses will be made to collect

status. Aligned, fault-free ICISes from channels reported to be in synchronous

operation by the FTP redundancy management software are included in this process.

o A new value to be loaded into the Poll_Priority (PP) ICIS register is calculated as a

function of the available fault-free channels, ICISes, and layers. The PP register value

defines the sequence of polling bits to be placed on the network when this FTP

participates in the network arbitration process. The first part of the poll bit sequence is

referred to as the "redundancy contention sequence" in which the network subscribers

of differing redundancy levels will arbitrate. One of the polling bits is the Triplex bit

which is only placed on the network by triplex network sites. Another bit, the Duplex

bit, is used to denote that the source of the poll bit is a duplex site. Thus sites of higher

redundancy level will always win a polling sequence at the very beginning of the

polling sequence. The Triplex bit in the PP register has additional significance - it

determines whether redundant, incoming poll bits monitored on the redundant layers

are voted or logically ORed. That is, when the Triplex bit is set the poll bits from the

three layers are voted; otherwise the bits are ORed. The PP value will only have the

Triplex bit set if all three channels and all three ICISes of the FTP are fault-free and the

FTP does not perceive any current layer faults (including faults on the root node

interface). The lower level poll priority bits are used to break ties and are always

initialized with the particular FTP's unique ID.
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. The voters used for inter-channel exchanges of the ICIS state machine's states have two

bits of registered information required to select the masking of the three inputs to the

voters. These bits are located as the most significant two bits of the ICIS register

located at address 1516 in the ICIS address space and are referred to as M0 and M1 in

the hardware documentation. These control bits are determined on the basis of the

current channel configuration, the channel's ID, and the configuration of aligned and

fault-free ICISes currently available.

. The configuration of network layers on which data is to be transmitted must be

determined. This information is used to enable the HDLC transmitters linked to

particular layers and is used to encode in the outgoing packet the expected layer

redundancy of this transmission which is used at the receiving site for layer fault

detection purposes. A layer is said to be available for transmission if the ICIS

transmitting on it is healthy and aligned and is in a channel in the current configuration

(i.e., its monitor interlock is engaged). Also, the layer must be fault-free from the

perspective of the transmitting FTP before it is considered available for transmission.

Note that this requirement for non-faulty layer status is relaxed if the solicited chain to

be executed is part of a retry self-test process.

5. A mask value is created to disable the inclusion of incoming poll-bit information from

any layers considered to be faulty.

. The Chain Status Register (CSR) is read and the Chain_Complete status bit is tested to

determine if the ICIS is free to start a new solicited chain; the ICIS may be busy even in

a fault-free condition. All interrupts to the processor are disabled while the

Chain_Complete status check is made and the new solicited chain is started. This

section of code is a "critical section" and can not be preempted by another task which

may happen to also want to start its own solicited chain at this same time. The "ICIS

solicited chain executer" is a shared resource among the multiple tasks of the system

and access to it is protected by the Chain_Complete bit. The starting of a new solicited

chain involves the following steps:

1. Load the Poll Priority register

2. Load the ICIS "Location 15" control register

3. Write the layer redundancy encoding in output packet

4. Set the Solicited_Chain_Pointer to start of new chain

5. Set the Interface_Control_Register (ICR) with value to poll for network possession

and execute solicited chain

The Chain_Complete bit is cleared upon the write to the ICR. The processor interrupts

are re-enabled.
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A copyof thesampledCSRregisteris analyzedaftereachattemptto startthesolicited
chain. The bits in the CSRassociatedwith ICIS error conditionsarecheckedand a
checkis alsomadeasto thetime whichhaselapsedwhileattemptingto executeanew
chain. If anerror conditionis detected,aresponseis madeimmediately(e.g.,attempt
to recoverfrom a possessiondefaultcondition)andtheerror conditionis reportedback
to thesubroutinecallerin theform of areturnvalue.

Process: Possession Default Recover

Input:
None

Output:
None

Description:

This process performs a reset function on the ICIS state machine which releases it from

being infinitely stuck in the possession_default state and from never being able to poll for

network possession again. All transmitter outputs to the network layers are turned off just

in case the ICIS is "babbling." The state machine is reset by setting the STOP bit in the

Interface Control Register and then clearing the STOP bit. The state machine should then

reset to the Not_polling state and be ready to respond to the next request to poll for network

possession.

4.2.3.4. Process to Check the Status of the ICIS

A subroutine is available which checks the current status of the ICIS and returns a status

indication to a caller. This subroutine checks for possession default conditions and checks

for stuck layer conditions (i.e., a network layer's physical signal level remains high for

more than 512 microseconds). If a possession default condition is detected, the possession

default recovery process is invoked. If a stuck layer condition is detected, the layer's status

is changed to a faulty state and the appropriate Network Manager is notified.
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5.0 THE NETWORK LAYER

To permit inter-computer communication in the AIPS distributed system, a data

communication mechanism was developed. This facility uses high-speed links to attain

high throughput and hardware redundancy to achieve fault tolerance. Additionally, it

employs a suite of software modules to implement the Network Layer of the ISO Model,

thus enabling abstracted inter-process communication. The Network Layer is responsible

for creating a virtual circuit, providing a standard interface to this path, and hiding the

complex mechanisms of its operation from the higher layers of software [4]. This chapter

describes the Network Layer that was designed for the AIPS Distributed Engineering
Model.

The AIPS IC network consists of three identical independent IC layers (not to be confused

with the ISO Layers) which operate in parallel to provide reliable communication and to

dynamically mask faults (illustrated in Figure 5-1). To allow inter-computer

communication, a virtual path is routed, or grown, between the distributed computers.

This path is constructed by the IC Network Manager, which is part of the IC

Communication Services. The IC Communication Services is a set of processes that

support inter-computer communication between fault tolerant FTPs of varying redundancy.

The IC Network Manager is the process which grows and maintains the AIPS IC network.

Since the AIPS Distributed Model utilizes three independent layers, the IC Network

Manager is composed of three IC Layer Managers. Each Layer Manager is responsible for

detecting, isolating, and reconfiguring around hardware faults in its respective network

layer. Additionally, to enable a completely distributed system, the three Layer Managers
may reside on different FTPs.

Sections 5.1 and 5.2 provide the functional requirements and design for the IC network

growth and FDIR respectively. Similarly, Sections 5.3 and 5.4 present the software

specifications for the IC growth and FDIR.

5.1 IC Network Growth Functional Requirements and Design

To enable fault-tolerant communication between the AIPS distributed processors, a

redundant set of communication paths was constructed. These paths are referred to as the

Inter-Computer Network, and the process that leads to their creation is called the IC

Network Growth. As stated earlier, the growth of the IC network is performed by the IC

Network Manager.
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Figure 5-1. AIPS Inter-Computer Network
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To permit a dynamically reconfigurable system, each triplex (or higher redundancy) FTP

may attempt to grow the IC network. Although multiple FTPs are capable of performing

the growth, only one FTP successfully completes it. That is, if two or more triplex FTPs

simultaneously try to grow the IC network (contend for the growth), then one or more of

these FTPs is "backed off" (suspended). The IC Network Growth Algorithm ensures that

a virtual communication path is constructed, even if multiple FTPs contend for the growth.

The IC

section.
Network Manager and the IC Network Growth Algorithm are described in this

5.1.1 Overview of the IC Network Growth

The growth of the IC network entails the creation of a virtual path allowing the

communication of information between the FTP sites. In steady state, the communication

path operates as a time division multiplex bus. This bus differs from a conventional linear

bus in that data is routed by circuit switched nodes through one of several possible paths

(depicted in Figure 5-1). The use of circuit switched nodes allows spare interconnections,

which can be brought into service if a hardware fault occurs (or a network component is

damaged). This network architecture provides coverage for many failure modes which

cause a standard linear bus to either fall completely or provide service to a reduced set of
subscribers.

Data flow in the IC network is controlled by the configuration of the ports in each node.

For a link to carry data between two nodes, the ports at either end of the link must both be

enabled. Nodes retransmit messages received from an enabled port on its other enabled

ports, but not on the port that received the message. When a node receives a message

addressed to itself from any port, disabled or enabled, it carries out the command encoded

in the message and then transmits its status on all of its enabled ports, including the port

which received the message if that port is enabled. A node obeys the reconfiguration

commands sent by the IC Network Manager by enabling or disabling its ports in

accordance with the value of the command's port enable field. Once the new configuration

is in effect, the node returns a status message. For proper operation, there can be no loops

in any layer. Accordingly, a data bit travels through each enabled link exactly once.

The IC Network Manager performs the growth of the IC network by executing a series of

node reconfiguration and status chains. The reconfiguration chains instruct one or more

nodes to configure their ports. Alternatively, the status chains merely query a set of nodes

for their status. These chains are used to simultaneously grow each layer of the IC

network. To permit this coincident growth of the IC layers, each reconfiguration chain

utilizes three transactions, one transaction per layer. A transaction is an autonomous

command to configure a node's ports or request a node's status. A reconfiguration

transaction is a command that configures a node's ports such that the node is added to the
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IC virtual path. After the designated node processes the reconfiguration transaction, it

returns its status. If the transaction is executed successfully, then a fault free response

from the node is returned.

If the reconfiguration chain and corresponding status chains execute without any errors,

then the associated nodes are added to the IC network. If one or more transactions in a

chain has an error, then either contention for the network growth has occurred or faults

exist in the IC network (the details concerning the differentiation of network contention

from hardware faults are discussed in Sections 5.1.4 and 5.1.5). If network contention

occurs, then IC Network Managers on the contending sites are backed off. Alternatively, if

faults exist, then the IC Network Manager modifies the reconfiguration chain to bypass the

faults and then re-executes the chain.

The virtual path in each layer is constructed incrementally. The details concerning the

algorithm used to select the next node to add and the corresponding route are described in

Section 5.3.6, IC Network Growth.

After the IC Network is grown, the System Manager is assigned to a particular FTP. The

System Manager is a collection of functions that allocate migratable functions to the FTPs,

supervise system FDIR, and maintain a consistent time. To simplify the IC Network

growth and the subsequent assignment of the System Manager, several restrictions are

currently imposed:

. The IC Network Manager that performs the IC network growth assumes the

network FDIR responsibilities for all layers. That is, the IC Layer Managers are

allocated to the same FTP as the IC Network Manager that grows the IC network.

Accordingly, these Layer Managers respond to all IC network FDIR requests.

. Any IC Network Manager that does not perform the growth of the IC network is an

Alternate IC Network Manager. An Alternate Manager does not respond to an IC

network FDIR request unless the FDIR function is migrated to it.

3. The FTP that performs the IC network growth assumes the System Manager

responsibilities.

. A triplex (or higher redundancy) FTP may attempt to grow the IC network only if it

can communicate on all three layers of the network. Loss of communication to a

layer can be due to a faulty root node, ICIS, channel, etc.

5.1.2 Initialization of the IC Network

The IC Network growth is a small part of the IC network initialization. In brief, this

initialization process involves the activation of the local FTP processes (or Local System
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Services), the actuation of IC Communication Services, the growth of the IC network, the

assignment of the System Manager, and the completion of network diagnostics.

When an FTP is powered up, the Local System Services are started. These Services are

responsible for synchronizing the FTP channels and initializing the required local tasks.

After the local tasks are started, the IC Communication Services are activated. The IC

Communication Services provide the Session and Transport layers of the ISO Model, and

they are started to support the initialization the IC Network. During this initialization

phase, these Services are used to determine whether or not the IC network has been grown.

To decide if the IC network has already been grown, the local FTP Resource Allocator

broadcasts a "Site is Accessible" (SA) message to all remote sites (using the IC

Communications Service). The FTP Resource Allocator is a Local System Services

process which coordinates and manages any global or migratable functions that are

assigned to the FTP. The Resource Allocator sends the SA message to indicate that this

FTP has completed the initialization of its Local System Services.

After the FTP Resource Allocator transmits the SA broadcast, it waits for a response from

the System Manager for a predetermined period of time (period > worst case IC network

growth time + IC communications overhead). This response will be either a specific

acknowledgement to the SA message or a general "Network is In_Service" (NIS)

broadcast. The "Site is Accessible" acknowledgement is sent by the System Manager if the

Manager was activated before the SA message was transmitted. The System Manager

broadcasts the SA acknowledgement to all FTP Resource Allocators to inform them that the

IC network is in_service. This acknowledgement is composed of: the FTPs that have

previously completed initialization, the redundancy levels of these initialized FTPs, the

location of the System Manager, and any updated status information. The "SA message,

SA acknowledgement" scenario is illustrated in Figure 5-2.

Alternatively, the "Network is In_Service" message is broadcast by the System Manager

and received by the FTP Resource Allocator, if the Manager was assigned after the SA

message was issued but before the SA time out had expired. If the FTP Resource Allocator

receives the NIS message, then it re-broadcasts its SA message. The SA message is re-

sent, because the System Manager did not receive the first transmission. The "SA

message, NIS message, SA message" scenario is depicted in Figure 5-3.

If neither the "Site is Accessible" nor the "Network is In_Service" message is received by

the Resource Allocator before the SA time out expires and the-FI'P is at least a triplex, then

the Resource Allocator requests that the resident IC Network Manager attempt to grow the

network. In contrast, if the time out expires and the FTP is a simplex or duplex, then the

FTP Resource Allocator continues to wait for the "Network is In_Service" message.
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Whenresident IC Network Managerendeavorsto grow the IC Network, either of two
outcomesis possible:(1) theManagercompletesthegrowth,or (2) anotherFTPcontests
thegrowth andthisManagerbacksoff. If theIC Network Managerbacksoff, then,after
the backoff periodexpires,it performsthe thesameinitialization protocol that theFTP
ResourceAllocatorpreviouslyinitiated. Specifically,

1. The IC Network Managerbroadcastsan SA message.This messageis sent to
determineif theIC networkwasgrownwhile theFTPwasbackedoff.

o The IC Network Manager waits for a response from the.System Manager for a

predetermined period of time. This response will be either the SA

acknowledgement or the NIS broadcast.

3. If neither response is received before the SA time out expires, then the IC Network

Manager re-attempts to grow the network.

4. If the SA acknowledgement is received, then the IC Network Manager informs the

FTP Resource Allocator that the IC network is in_service.

5. If the NIS message is received, then the IC Network Manager re-sends the "Site is

Accessible" message and waits for the subsequent acknowledgement.

5.1.3 Assignment of the System Manager

After an IC Network Manager completes the growth of the IC network, it notifies the

resident FTP Resource Allocator that the network is in_service. Since this FTP completed

the IC network growth, it assumes the System Manager responsibilities. Furthermore, the

IC Network Manager notifies the System Manager of the presence and location of any

network faults.

After the System Manager has been actuated, it uses the IC Communications Service to

broadcast the "Network is In_Service" message. In addition to informing all FTPs that the

network is in_service, this message specifies the location of the System Manager and any

updated status information. Subsequently, the System Manager delays for a pre-

determined time waiting for any "Site is Accessible" messages sent by remote FTPs. When

it receives an SA message, it responds by broadcasting an acknowledgement to inform all

FTPs that the FTP which transmitted the SA message is available. After the NIS time out

has expired, the System Manager updates its FTP configuration database.

After all FTPs are accessible, a suite of IC network diagnostics is performed by the IC

Network Manager. These diagnostics attempt to detect hardware faults in the spare

network components and recheck any failed nodes or links. After the diagnostics are
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completed, the IC User Communications are enabled permitting inter-processor
transmissionbetweenapplicationtasks.

5.1.4 Network Contention

When two or more FTPs simultaneously attempt to grow the IC network, network

contention occurs. As stated earlier, these contending sites are backed off and may attempt

the growth at a later time. Additionally, to complicate the IC growth process, hardware

faults may also exist in the network. Consequently, the algorithm must be capable of

distinguishing between FTP contention and network faults. .

The occurrence of network contention can be easily detected if either of the following two

assumptions is made.

. The IC network is fault free.

If the network is guaranteed to be fault free during the IC network growth,
then all chains will execute without errors unless two or more FTPs

simultaneously attempt to grow the network. As a result, if a transaction in

a reconfiguration or status chain has an error, then network contention has

occurred.

. A fault can only exist on a single layer.

/f faults are restricted to one of the three layers of the IC network, then a/1

chains will execute with a maximum of one error (these chains employ one

transaction per layer) unless two or more FTPs simultaneously attempt to

grow the network. As a result, if a reconfiguration or status chain has two

or more errors, then network contention has occurred.

However, if assumptions are not made concerning the existence or position of hardware

faults, then it is sometimes difficult to detect the occurrence of network contention, because

contention and faults can generate the same error symptoms. For example, network

contention can generate the following error symptoms:

1) The FTP performing the growth of the IC network receives a message other

than a node response (such as reconfiguration or status commands from a

different FTP).

2) The disconnection of nodes that were previously connected to the IC network.

3) The loss of multiple node responses or the occurrence of errors in multiple node

responses.
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Nevertheless,theseidenticalsymptomscanbecausedbythefollowing hardwarefaults:

1) Babblersretransmittingold command flames.

2) Faults that manifest themselves during the growth of the network.

3) Multiple rink or node faults on different layers.

Since the occurrence of network contention and existence of hardware faults can generate

similar error symptoms, the growth algorithm can not differentiate between contention and

faults based on a single set of error information. Consequently, in order to consistently

distinguish network contention from faults, each iteration of the growth algorithm (the

attempt to add three nodes to the network, one per layer) must involve multiple steps,

where each step performs an independent task. As a result, if contention occurs or faults

exist, each iteration will generate several independent sets of errors (rather than just one set

if a single step iteration is used). Accordingly, if the steps of each iteration are chosen

correctly, the resulting set of error symptoms will allow the algorithm to consistently

differentiate between the occurrence of network contention and the existence of hardware
faults.

5.1.5 IC Network Growth Algorithm

During the AIPS power-on sequence, all the layers of the IC network must be grown. The

IC Network can be grown using a centralized algorithm, but a fully distributed system

should be able to perform a distributed growth. The primary advantages of a distributed

growth algorithm are that: a deterministic power-on sequence is not required and the AIPS

system can automatically adapt to failures in processing sites.

The fundamental process in the algorithm for the distributed growth of the IC network is

the incremental addition of nodes to each layer of the IC network. The incremental addition

of three nodes, one per layer, is considered an iteration of the growth. Each iteration of the

growth algorithm involves the following steps:

1) Request the status of the nodes that have been previously added to the IC
network.

2) Execute a reconfiguration chain to add three target nodes (one per layer) to the
IC network.

3) Request the status of the nodes that should be connected to the IC network (the

nodes of step 1 + the target nodes).
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Step 1of each iteration is primarily used to detect the occurrence of network contention.

This step is a valid means of perceiving contention, because of the method that is used to

add the circuit switched nodes to the IC network. Specifically, when an attempt is made to

add a node to the network, all ports of the node are disabled except the port through which

the connection to the node is made (the node's inboard port). As a result, if two FTPs are

simultaneously growing the network, one FTP will eventually disable the ports of a node

that another FTP has enabled, thus causing the latter FTP to have an inconsistent view of

the network. Accordingly, when step 1 is executed, this latter FTP (or possibly both FTPs

depending on the timing) will detect errors and conclude that network contention has

occurred. .

Step 2 attempts to add three target nodes to the IC network. One node is added to each

layer. Further, these nodes may or may not be in the same relative position within each

layer (e.g. nodes I, 6, and I 1 in Figure 5-1 are in the same relative position in each layer,

whereas nodes 3, 6, and 12 are in different relative positions). If this step is adding nodes

that are in the same relative position, then the iteration is performing a "uniform growth".

Conversely, if the execution of this step is adding nodes to the network that are in different

relative positions, then a "non-uniform growth" is being performed.

Finally, step 3 is a confirmation step. When executed, it verifies that the nodes addressed

in step 1 and the target nodes added in step 2 are still accessible. This step is also used to

detect the occurrence of network contention.

After each iteration is executed, the node responses from each step must be processed (the

nodes return data in response to the reconfiguration and status chains). These responses

are utilized to indicate whether a hardware fault exists, network contention occurred, or the

nodes were added successfully. The analysis performed by the IC Network Growth

Algorithm is illustrated in Figures 5-4 and 5-5 andis outlined below:

1. If errors do not occur during the execution of all three steps of the iteration,

then the associated nodes are added to the IC network.

. If a single error occurs during the execution of step 1, then the algorithm

assumes that a remote FTP is performing a non-uniform growth and has

modified the port configuration of a node.

a. The algorithm presumes that contention has occurred and backs off.

bo It is possible that the error is due to a node (or link) that failed during the

execution of the growth rather than network contention. However, if a

hardware fault is the cause of the error, it will be detected during the re-

growth of the network (by a remote FTP or this FTP after its back off

time has expired).
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Figure 5-4. Processing of the Execution of Steps 1 - 3

, If errors occur on two or more layers in step 1, then the algorithm assumes that

a remote FTP is performing a non-uniform or uniform growth and network

contention has occurred.

a. The algorithm backs off.

b° It is possible that the errors are due to a nodes or links that failed during

the execution of the growth rather than network contention. However,

if a hardware faults are the cause of the errors, it will be detected during

the re-growth of the network (by a remote FTP or this FTP after its back

off time has expired).

o If errors do not occur in step 1, one or more errors occur during the execution

of step 2, and consistent errors occur in step 3, then steps 1 - 3 are executed

again using the same set of chains.

a. The chains are re-executed to confirm that the multiple errors were due

to hardware faults rather than network contention.
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Figure 5-5. Processing of the Re-execution of Steps 1 - 3

,

b. Each FTP will delay a different non-zero length of time before re-

executing steps 1 - 3. This delay is incorporated to ensure that if two or

more FTPs that "directly contend" during the first execution of the

chains, then they will not contend during the second execution. (In this

context, direct contention occurs when two or more chains are executed

at the exact same time by different FTPs, thus causing the loss of or

errors in the expected node responses). The delay that is imposed must

be greater than the time required to execute and process steps 1 - 3

(Delay >= FTP_ID * worst case time).

If errors do not occur in step 1, errors occur during the execution of step 2,

and inconsistent errors occur in step 3, then the algorithm assumes that

network contention has occurred.

°

- Network contention is assumed, .because of the dissimilar data that

resulted from the execution of steps 2 and 3.

If errors do not occur in steps 1 or 2 and one or more errors occur during the

execution of step 3, then the algorithm assumes that a remote FTP is
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performing a non-uniform or uniform growth and network contentionhas
occurred.

o If errors do not occur during the re-execution (re-executions are only

performed to verify the existence of hardware faults - case # 4) of steps 1 - 3,

then the algorithm assumes that either network contention or transient errors

caused the errors in the initial execution of the procedure.

a. Since the re-execution of the procedure did not have any errors, then the

associated nodes are added to the network. .

bo It is possible that the errors which occurred during the initial execution

of steps 1 - 3 were due to contention with one triplex FTP and that

errors did not occur in the re-execution of the steps because of the

different delay between retries. As a result, the procedure will not detect

the occurrence of network contention during this iteration of the

algorithm. However, as the contending FTPs continue to grow toward

each other, the detection of network contention (via errors in step 1 or 3)
is inevitable.

8. If one or more errors occur during the re-execution of step 1, then the

algorithm assumes that network contention has occurred.

a. Network contention is assumed, because of the dissimilar data that

resulted from the execution and re-execution of the procedure.

b° It is possible that the errors are due to nodes (or links) that failed during

the execution of the growth rather than network contention. However,

if hardware faults are the cause of the errors, they will be detected

during the re-growth of the network (by a remote FTP or this FTP after

its back off time has expired).

o If errors do not occur in step 1, one or more errors occur in step 2 during the

re-execution of of the procedure (errors similar to the errors resulting from the

initial execution of step 2), and consistent errors occur in step 3, then the

algorithm assumes that hardware faults exist on multiple layers of the IC

network.

a° The corresponding reconfiguration chain is modified to bypass the faults

and steps 1 - 3 are executed again.

b. It ispossible that the errors which occurred during the initial execution

of steps 1 - 3 were due to contention with one triplex FTP and that the
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errorswhichoccurredin there-executionof theprocedureweredueto
contentionwith adifferentFTP. As aresult,theprocedurewill falsely
assumethat network faults exist. However, this situation will be
rectified during the final phaseof the growth becauseall previously
failedcomponentsarere-tested.

10. If theerrorsthatoccurduringtheN-executi0nof step2 arenot consistentwith
theerrors that result from the initial executionof step2, then the algorithm
assumesthatnetworkcontentionhasoccurred.

11. If errorsdonot occurin step1,errorsoccurduringthe r_-execution of step 2,

and inconsistent errors occur in step 3, then the algorithm assumes that

network contention has occurred.

- Network contention is assumed, because of the dissimilar data that

resulted from the re-execution of steps 2 and 3.

12. If errors do not occur in steps 1 or 2 and one or more errors occur during the

re-execution of step 3, then the algorithm assumes that a remote FTP is

performing a non-uniform or uniform growth and network contention has
occurred.

5.1.6 Analysis of Network Contention Error Symptoms

As mentioned in Section 5.1.4, the motivation behind the development of a multi-step

growth algorithm is to provide the capability of differentiating between the existence of

hardware faults and the occurrence of network contention. In that section, three error

symptoms were listed that could result from either faults or contention. These symptoms

ale:

1) The reception of reconfiguration or status commands from a different b'TP.

2) The disconnection of nodes that were previously connected to the IC network.

3) The loss of node responses or the occurrence of errors in the node responses.

In the following sections, the growth algorithm is examined with respect to each of these

error symptoms to illustrate some of the issues involved in the IC network growth.

5.1.6.1 Symptom 1: Reception of Commands from a Remote FTP

The reception of reconfiguration or status commands from a remote FTP can result if either

a babbler retransmits old command frames or multiple FrPs contend for the growth. If this
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error symptomis dueto oneor morebabblers,thenthealgorithmwill detectthebabblers
throughtheexecutionandre-executionof steps2 and3. The babblerswill bedetected,
becausetheywill disrupt the noderesponsesduring bothexecutions(it is assumedthat
intermittent babblers do not exist). Accordingly, the algorithm will modify the
reconfigurationchains,disconnectthebabblers,andcontinuegrowingthenetwork.

Alternatively, if this error symptomis dueto networkcontention,thenthealgorithmwill
eventuallydetecttheoccurrencevia step1or step3. Specifically,asthecontendingFTPs
continuetheir respectivegrowths,theFTPswill beginto "disrupt"eachother(modify the
otherFTPs'virtual paththroughthenetwork),andthealgorithm.will detectthe network
contention.

Under certain improbablecircumstances,the growth algorithm may initially confuse
multiple FTP contentionwith multiple babblersand causenetwork componentsto be
falselyfailed. However,this situationisrectified in thefinal phaseof thegrowth,because
all previouslyfailednetworkelementsarere-tested.

5.1.6.2 Symptom 2: Connected Nodes Have Been Disconnected

Nodes previously added to the IC network can be disconnected because of hardware faults

that arise during the growth or multiple FTP contention. The loss of previously connected

nodes will be detected in step 1 or step 3. In this situation, the algorithm always assumes

that network contention is the cause of the problem. However, as stated, the loss of these

connections may be due to hardware failures that manifest themselves during the growth.

If faults are the cause of the problem, they will be detected during a subsequent regrowth of

the network (by a different FTP or this FTP after its back off period has elapsed).

Specifically, these faults will be isolated during the execution and re-execution of step 2.

5.1.6.3 Symptom 3: Node Responses are Lost or Have Errors

The loss of node responses (or errors in the node responses) can be due to hardware faults

or the occurrence of network contention. If this error symptom is the result of faults, then

the algorithm will detect these faults through the execution and re-execution of step 2.

They will be detected, because both executions will have errors. As a result, the algorithm

will modify the reconfiguration chains, bypass the faults, and continue the growth.

Under certain improbable circumstances, the growth algorithm may initially confuse

multiple FTP contention with multiple faults and cause network components to be falsely

failed. However, this situation is rectified in the final phase of the growth, because all

previously fa_iled network elements are re-tested.
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5.1.7 Determination of a Back Off Period

If an FTP that is growing the IC network detects that another FTP is also attempting the

growth, it will back off. That is, the IC Network Manager on this site stops performing the

growth and delays a predetermined period of time. This back off period is calculated using

the following equation:

Delay = [((# of triplex FTPs) - 1) + ((FTP_ID - 1) * 2)] * (Worst Case Grow Time)

The Worst Case Grow Time is the primary factor in the back off delay, because it is the

basic offset necessary to avoid network contention. The procedure to compute this

parameter for a given network topology is described in Section 5.2.3.3. A typical value for

this parameter for the AIPS engineering model 5-node IC network is 2.6 seconds. This

value is derived from empirically measured network transaction time and the worst case

number of transactions that are required to grow the network for the engineering model IC

network topology. The ((# of triplex FTPs) - 1) component is used to create a non-zero

offset that is based on the maximum number of FTPs that could contend for the growth.

Further, the (FTP_ID - 1) component is utilized to prioritize the FTPs contending for the

growth. Finally, the factor of 2 is required to allow enough time to grow the IC network

when consecutive numbered sites contend and back off.

The back off delay is not designed to minimize the IC network growth time in the presence

of network contention. The delay is designed to ensure that the IC network can be

successfully grown even if two or more FTPs contend for growth of the network.

5.1.8 The IC Network Diagnostics

As stated earlier, after the IC network is grown and all FTPs are accessible, IC network

diagnostic tests are performed. These tests are used to detect hardware faults in the spare

network components, to verify that network elements were not falsely failed during

growth, and to exercise the network nodes. The diagnostics are performed by the IC

Network Manager and are completed in a centralized manner on a layer by layer basis.

To determine if faults exist in an IC layer's spare links and nodes, the virtual

communication path is reconfigured to employ these components. After the IC growth is

completed, the IC Network Manager is capable of communicating with each node in the

network. To verify that a spare element is working, it is cycled into the active path (using a

reconfiguration chain) and an attempt is made to again communicate to all network nodes

(via a status chain). If these nodes can still be reached without communication errors, then

• the newly utilized component is deemed working. Alternatively, if transmission errors

occur, then the previous virtual path is restored and the element under test is marked as

failed. This process is continued until aU spare network components are examined.
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To verify thatthecomponentsfailedduringtheIC networkgrowthwerenot falselyfailed,
theIC Network Managerattemptsto utilize theseelements.If a failed link is being re-
tested,thentheManagercyclesit into theactivevirtualpathandattemptsto communicateto
the network nodes. If all nodesrespondwithout errors, then thelink is presumedto be
working. Conversely,if errorsareencountered,thenthepreviouspathis restoredandthe
componentisconfirmedto befaulty.

Thediagnosticstestsperformedto recheckafailed nodediffer slightly from thoseusedto
testa failed link. Similar to the link verification process,the failed nodeis testedby
attemptingto communicateto it. However,as illustrated in Figure 5-1, eachnodecan
typicallybereachedby multiplepaths.Thediagnostictestsselectonepossibleroute,usea
reconfigurationchain to actuatethe path, and processthe responsefrom the chain to
determineif thenodewasreachedsuccessfully,ff errorswereobserved,thenthis routeto
thenodeis consideredfaulty, andanotheris selected.If all pathsto thenodeundertest
havebeencheckedandarefaulty, thenthenodeismarkedasfailed. Nonetheless,if apath
to thenodeis foundthatappearserror-free,thenthenodeisdeemedworking. After sucha
nodeis re-instatedasworking,thenanylinks thatarenow sparearecheckedfor faults.

Thesediagnostictestsarealsoperformedto exerciseandstressthenetworknodes.TheIC
network growth focuseson theconstructionof a virtual path. This growth processdoes
not comprehensivelycheck the network nodes,becauseof the possibility of network
contention.Accordingly,thesediagnosticsareemployedto verify thatall nodesoperateas
expected.Forexample,thesetestsverify thatthenodesdonot transmitondisabledports,
do notrespondto thewrongaddress,andarecapableof quickreconfiguration.

5.1.9 Network Contention Examples

To summarize the discussion of the IC network growth algorithm, two network contention

examples are presented. These examples involve four triplex FTPs and are described in the

Sections 5.1.9.1 and 5.1.9.2.

5.1.9.1 Example 1: Four FTPS Contend - Three FTPS Back Off

Example 1 is illustrated in Figure 5-6. In this scenario, each FTP powers up and attempts

to grow the IC network at a different time. FTP 1, FTP 2, and FTP 3 eventually realize

that other FTPs are attempting to grow the IC network, and each site backs off (the back

off period is calculated using the aforementioned equation). F/'P 4 does not detect network

contention and completes the growth of the IC network. Accordingly, FTP 4 assumes the

System Manager and IC network FDIR responsibilit!es, and it broadcasts the "Network is

In_Service" message. When back off time for FTP 1 expires, the site broadcasts a "Site is

Accessible" message. The System Manager on FTP 4 responds to the message by

broadcasting an acknowledgement. Eventually, the back off times for FTPs 2 and 3

expire, and a similar procedure is performed. Finally, all of the FTPs are accessible and
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networkdiagnosticsareperformed.After thediagnosticprocedurehasbeencompleted,the
IC UserCommunicationsareenabled.

5.1.9.2 Example 2: Four FTPS Contend - Four FTPS Back Off

Example 2 is illustrated in Figure 5-7. Example 2 is identical to Example 1 except that all

four FTPs detect contention and back off. Since FTP 1 has the shortest back off time, it is

the first site to "wake up". After its back off period expires, FTP 1 broadcasts a "Site is

Accessible" message. The IC Network Manager on FTP 1 waits for a predetermined time

period (greater than the worst case growth time, T) for a response, from System Manager.

Since the System Manager has not been assigned, FrP 1 times out and re-attempts to grow

the network. FTP 1 completes the growth uncontested, because the other FTPs axe still

backed off. FTP 1 assumes the System Manager and IC network FDIR responsibilities.

The System Manager broadcasts the "Network is In_Service" message and subsequently

acknowledges each "Site is Accessible" message (FTP 2 sends the "Site is Accessible"

message twice, because it received the "Network is In_Service" broadcast - see Section

5.1.2). Finally, after all FTPs are accessible, the network diagnostics are performed, and

the IC User Communications are enabled.

FTP 1

FTP 2

FTP 3

FTP 4

LEGEND:

RD - Power On
SG Start Growth

SMA - System Mgr. Assigned;
Net. is In_.Service Broadcast

C80 - Contention and Back Off
R3 - Attempt to Regrow Network
SA - Site Accessible Broadcast

(313 - IC Growth Completed
SMR - System Mgr. Responds to SA
NDC - Net. Diagnostics Completed
MFG - Multiple Layer Fault

Occurred during Growth

MBG - Multiple Layer Fault
Exists before Growth

T - Worst Case Growth Time

Figure 5-6. Network Contention Example - FTP 4

Grows the IC Network
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LEGEND:

FO - Power On
SG - Start Growth

SMA- System Mgr. Assigned;
Net. is In_Service Broadcast

- Contention and Back Off

R3 - Attempt to Regrow Network
SA - Site Accessible Broadcast

GC - IC Growth Completed

- System Mgr. Responds to SA
NDC - Net. Diagnostics Completed

M:G - Multiple Layer Fault
Occurred during Growth

k,t3G - Multiple Layer Fault
Exists before Growth

T - Worst Case Growth Time

Figure 5-7. Network Contention Example - FTP 1

Grows the IC Network

5.2 IC Network FDIR Functional Requirements and Design

In contrast to the IC network growth, the network fault detection, isolation, and

reconfiguration (FDIR) function is assigned to a particular FTP. The IC Network Manager

that performs the IC network growth assumes the network FDIR responsibilities for all

layers. That is, the three IC Layer Managers are assigned to the same FTP as the IC

Network Manager that grows the IC network, and they are responsible for maintaining the

layers of the IC network. These "IC Layer Manager to FDIR" assignments are changed

only if a hardware fault necessitates it.

The functional requirements and design of the IC network FDIR process are discussed in
this section.

5.2.1 The IC Network Layers and the IC Layer Managers

As illustrated in Figure 5-1, each layer of the AIPS IC network employs five nodes, seven

inter-node links, and four FTP-node links. The IC network growth creates a virtual path

through each layer to permit reliable inter-FTP communication. Given this topology, each

layer has a spare node and three spare inter-node links. When necessary, these spares can

be brought into service to reconfigure around faults or damaged components.
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After the IC network is grown and the System Manager is activated, the IC network FDIR

responsibilities are assigned. As outlined in Section 5.1.1, these responsibilities are given

to the FTP that hosts the IC Network Manager which grows the IC network. This IC

Network Manager allocates and initializes three IC Layer Managers. Each IC Layer

Manager controls the FDIR activities for a particular layer.

The IC Network Managers that did not grow the IC network are considered Alternate IC

Network Managers. Similarly, their corresponding IC Layer Managers are designated as

Alternate IC Layer Managers. These processes are capable of assuming the IC network

FDIR responsibilities but are dormant until such FDIR functions are migrated to them.

5.2.2 IC Network FDIR - Fault Detection

The presence of a fault (or damaged component) is detected during normal inter-computer

communication. The fault (or faults) is perceived, because it disrupts the transmission

from one site to another. More specifically, when the IC Communication Services on an

FTP sends a message, three copies are transmitted. One copy is sent on each layer of the

IC network. If a fault exists such that the virtual path on a layer is disrupted, then the copy

transmitted on this layer will be corrupted. As a result, the destination FTP will correctly

receive only two of the three copies. The destination FTP, specifically the ICIS

Redundancy Management and Source Congruency process (discussed in Section ***),

performs a suite of diagnostic tests to determine if this information loss was due to a fault

in the network interface (the ICIS) or in the network layer. If the ICIS Redundancy

Management procedure suspects that the communication problem is due to a layer fault, it

notifies the the IC Network Manager (which may reside on a remote FTP) and identifies the

questionable layer. Subsequently, the IC Network Manager takes the IC layer out of

service, broadcasts this updated layer status to all FTPs, and sends a "repair" command to

the corresponding IC Layer Manager. The IC Layer Manager inspects the layer to verify

the presence of a fault, attempts to identify the fault, and reconfigures the layer around the

failed component.

5.2.3 IC Network FDIR - Fault Analysis and Reconfiguration

When an IC Layer Manager receives a repair request, it executes a "verification" status

chain to determine if all nodes in the questionable layer can be reached. If all nodes return

an error-free response, then the Layer Manager presumes that the fault was transient or that

it exists somewhere external to the layer. In either situation, the IC Layer Manager deems

the layer to be working and accordingly notifies the IC Network Manager which informs

the System Manager and all remote FTPs. Alternatively, if all nodes have errors, then it is

presumed that the ICIS interface to the layer has failed. As a result, the IC Layer Manager

informs the IC Network Manager and the FTP Resource Allocator that it is unable to

perform FDIR on this layer. If the ICIS is working and the response from the verification

status chain has one or more errors, then the layer under test has at least one faulty
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component. The IC Layer Managerthen invokesa fault analysisprocedureto try to
identify thetypeandlocationof thefailedcomponent.After thisanalysisis complete,the
Layer Managerentersthe faultreconfiguration phaseandthe faulty network elementis
bypassed. The next two sub-sectionsdiscussthe fault analysisand reconfiguration
processesrespectively.

5.2.3.1 Fault Analysis

The fault analysis process utilizes the results of the verification status chain to speculate on

both the type of fault and its location within the IC layer. This hypothesis is constructed

using two procedures: the node data analysis and the error analysis. (It should be noted

that the assumption underlying all the deductive reasoning in these algorithms is that only

one component has failed).

The data analysis process examines the response from the verification status chain to

determine if a node is transmitting on a port that should be disabled. Initially, this

algorithm decides if a babbler is present, because a babbler causes the network nodes to

return invalid data. If such a fault is not detected, then this process analyzes the data from

the error-free node responses, determines the nodes that have received messages, and

examines the origin of these messages. If a non-failed, disabled port reports the reception

of a message, the node adjacent to that port is transmitting on a disabled port (adjacent ports

axe always in the same configuration, either both enabled or both disabled). If a node is

located with such a fault signature, then the fault is attributed to the node transmitting on the

disabled port and the fault reconfiguration procedure is invoked. In contrast, if more than

one node is found to have this fault, the analysis is deemed not successful, and the error

analysis process is called.

The error analysis process attempts to deduce which component produced the set of errors

present in the verification status chain. Although these errors may indicate several faulty

network nodes, they usually result from only one faulty component. Of course not all sets

of errors axe capable of being analyzed. The input space of this procedure has many

combinations which do not pinpoint a specific network component as being faulty.

Further, as stated previously, the presumption underlying the error analysis is that only one

component has failed.

If all nodes in the layer have errors, the error analysis algorithm attributes the errors to an

interface node or interface link failure. If some nodes have errors and others do not, two

possible failure modes axe considered: (1) a failed link or node through which no

transmission takes place or (2) a single node failure. The single node failure symptom

"could be indicative of a node which does not respond to commands but which continues to

retransmit messages as it did before the failure. It could also be a node which itself is not

failed but to whose address another node in the network responds. The single node failure

is easy to diagnose since exactly one node in the status collection chain shows an error.
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If two or morebut fewer than all nodes have errors, then the remaining problem is to

determine if the cause of those errors is a link or node whose transmissiort/retransmission

function is no longer operational. The basic idea is that when a link or a node fails in this

manner, then all nodes downline of this fault also have errors. The signature of such a

failure is that these nodes form a treelike pattern in the network. It should be noted that

another failure mode that produces a similar pattern of errors is a node which babbles on all

outboard ports (outboard ports are all ports except the one through which the connection to

the IC Layer Manager is made). To determine whether the observed errors fit the pattern

for a failed link, node, or outbound babbler is a three step process. The first step is to

identify a node which qualifies as the root of the failed tree. Such a node is one that had

errors itself but that has an inboard port (the port which receives the commands sent by the

IC Layer Manager) adjacent to a non-failed node. To prove this hypothesis, exactly one

node should have this characteristic. If two or more such nodes exist, the fault is

considered undiagnosable. Nonetheless, if a root is found, the second step is invoked to

determine whether or not all nodes downline of the root had errors attributed to them. This

is accomplished by a recursive algorithm. First, the algorithm processes information about

the current node. The initial current node is the root of the failed tree. Next, the recursion

procedure examines the nodes that are adjacent to the outboard ports of the current node

(i.e. downline of the current node). If none of the adjacent nodes have errors attributed to

them, then the desired pattern is not present and the fault is considered undiagnosable.

However, if the nodes downline of the current node do have errors, then the recursion

continues until every downline node has been visited. If a Ireelike pattern is established,the

third step of the pattern checking process can proceed. This step verifies that all the nodes

that have errors appear in the failed tree, i.e. no nodes with errors lie outside the tree. If

nodes with errors are found outside the tree, the fault is considered undiagnosable.

Alternatively, if all of these nodes are in the tree, the fault reconfiguration algorithm is

called to make the final determination of whether or not the fault is due to a failed link, a

failed node, or an outbound babbler. If the fault was diagnosable, the error analysis

process informs the reconfiguration algorithm of its speculated type and location.

Figure 5-8 shows a network which has a broken link. In this situation, the verification

status chain would not return responses from the shaded nodes in the figure. Since Node 2

is the only node with an inboard port facing a non-failed node, it is identified as the root of

the failed tree. Furthermore, all nodes downline of Node 2 are failed and no nodes outside

the tree had errors. Thus, error analysis identifies this fault as a failed link between Node 1

and Node 2 or a failure of Node 2. The final identification of the fault takes place during

network recordiguration.
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Figure 5-8. Identifying A Failed Link

5.2.3.2 Reconfiguration

The purpose of this process is to reconfigure the layer so as to restore error-free

communication to all reachable, non-failed nodes. The reconfiguration action depends on

the type of failure determined by the fault analysis process. The fault identified in this

report is actually a hypothesis about what is causing the errors on the layer. The

reconfiguration process, in effect, tests this hypothesis and then verifies that the layer is

again fully operational. Therefore, the layer may go through several intermediate

configurations before the reconfiguration process is complete.

The fault analysis process identifies five classes of faults: a babbler, a link or node failure,

a node which transmits on a disabled port, a single node failure, and an undiagnosable

failure. A separate strategy exists to deal with each of these fault classes.

The reconfiguration process is considered complete when the node status chain is executed

on the reconfigured layer and does not detect any errors. The backup stratagem for dealing

with unanticipated error phenomena which occur during a reconfiguration attempt is the

layer regrowth (detailed in Section 5.2.3.3). This is also the strategy when the fault

analysis is unable to diagnose the failure mode.

In general, reconfiguration strategies are designed to deal with both active and passive

faults in the hardware. Passive faults are characterized by the non-retransmission of data,

i.e. a barrier or obstacle to the flow of data in the layer. A disconnected cable is an example

of such a fault; data cannot be retransmitted over this cable but transmission between other

connections in the layer is not affected. Active faults are characterized by the disruption of

data flow in the layer beyond the boundaries of the failed component itself. An ICIS with a

transmitter stuck on high is an example of this type of fault; the stuck on condition is

retransmitted throughout the layer, possibly disrupting transmissions between all layer

inter-connections. Since different faults can produce identical error symptoms (e.g. a
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brokenroot link and an ICIS transmitterstuckon high result in zerobyte countsfor all
noderesponses),the reconfigurationalgorithmmust identify the specific causeof the
problemsoasto effectarepair.

Whena babbleris detectedin the layer,the layeris regrown. A babbleris anactivefault
thatis detectedbytheICISat its receivinginterfaceto the layer. (TheICIScannotobserve
astuckon highconditionon its transmittinginterface.)For a layerof N nodeswhichhasa
babbler,thecost of regrowingthe layer is N + P chains,whereP is the numberof spare
portson thebabblingnodewhichmustbe tried. Strategiesto lessenthiscostarepossible
in layers that are either maximally branchingor fully linear. Nonetheless,thecurrent
designusesregrowthto reconfigurethelayerin whichababblerispresent.

A failed nodegeneratesthe sameerror patternasa failed link. Thus, when the fault
analysisreveals thepresenceof this failure mode, the reconfigurationalgorithm must
determinewhichfault hasactuallyoccurredandreconfigurethelayeraccordingly.It is first
assumedthata link hasfailed. The failed link is disconnected,andanattemptto reachthe
failednode,i.e. thenodeimmediatelydownlinefrom thelink, is madeby usinganyspare
portson thatnodewhichareadjacentto non-failednodes.Thechainusedtoreconnectthis
nodeto therestof the layer containsthreetransactions.Thefin'sttwo transactionsenable
theportson either sideof thenew inboardlink; thethird transactiondisablestheformer
inboardport of this nodein casethenodeadjacentto thatinboardport is ababbler. If this
strategyfails to restorecommunicationwith the failed node(possiblybecauseno spare
portsareavailable),datais assembledwhichwill allow eachbranchof thefailedtreeto be
reconnectedto the active layer. This dataconsistsof a list of nodesfor each branch
stemmingfrom thefailed node(i.e. aseparatelist for eachsetof nodeswhich lie downtine
of eachof its outboardports). Only one successfulconnectionto any spareport on a
branchis necessaryto restorecommunicationto theentirebranch(andpossiblyto thefailed
nodeandall othernodesin thefailed tree). Again a threetransactionchain is used,this
timefor adifferentpurpose.Thef'trsttwotransactionsenabletheportsoneithersideof the
newlink while the third transactionattemptsto obtainstatusfrom thefailed node. If the
failed nodecorrectly returnsits status,therepair is completeandtheabsenceof errors.is
verified by collecting statusfrom everynodein the layer. If the failed nodeis still not
reachable,the port connectingthis nodeto thepresentbranchis disconnectedandthe
properfunctioningof thenewlyenabledlink is verified. Thenall nodeson thisbranchare
removed from the failed node set. The net effect of this process is to restore
communicationwith all reachablenodesin the layer while isolatingthefailed node. As
communicationto eachbranchisrestored,thepossiblepool of sparelinks increases.Thus
if any branchwasnot connectedbecauseof a lack of sparelinks, this branchis retried
whenever a connection to anotherbranch is successful. Any nodeswhich are still
unreachableattheendof thisexhaustiveprocessareassigneda statusof failed.

If a noderetransmitsvalid dataon a port which shouldbedisabled,the nodemust be
removedfrom thelayer. This failuremodeis distinguishedfrom ababblerwhich is always
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transmittingarandombit streamor is stuck on one. When a babbling port is identified, the

adjacent port of the neighboring node is disabled. This neighboring node will not

retransmit on its other enabled ports anything received from the disabled port.

Furthermore, the node will ignore any random bit patterns it receives. However, if the

neighboring node receives a request for its status on a disabled port (as might occur if a

failed node is transmitting on a disabled port), it will transmit its status on all of its enabled

ports. If this failed node is not removed, each time the Layer Manager asks for status from

the node adjacent to this port, it would receive two valid commands to report its status,

which will result in two status responses. However, only one response is expected. Once

the first response is received by the Layer Manager, another node will be commanded to

report its status. The second response of the node may interfere with the reply of a node

whose transaction is later in the chain, making it appear that this next node has failed to

respond correctly to a command. Once the failed node has been removed from the layer,

status is collected from the remaining nodes to verify that in fact the fault has been

identified and isolated. If errors are still detected in the layer, a full regrowth, with a

complete set of diagnostic tests, is performed.

Removing a node is a simple matter if the node is a leaf; only the link connecting it to the

layer needs to be disconnected. This is accomplished with one reconfiguration chain. If

the failed node is not a leaf, the nodes downline from it need to be reconnected to the layer

through alternate links. These downline nodes are added to a reconnection queue. Each of

these nodes is also added to a set of unreachable nodes. The link connecting the inboard

port of the failed node to the layer is then disabled. Next, an attempt is made to re-establish

a connection to each isolated branch via a spare link from a node which is still reachable

(i.e. is not a member of the unreachable node set). Only one such connection needs to be

made to restore communication to all the nodes in the branch. After the new connection is

enabled, the link connecting the failed node to this branch is disconnected. As each branch

is reconnected, the nodes in that branch are removed from the reconnection queue. If any

branch is successfully reconnected, the branches that were not connected during earlier

attempts are tried again (since more spare links become available as communication is

restored to nodes in other branches). This algorithm, while isolating the failed node,

restores communication to every reachable node in the layer. Nodes which cannot be

reached because earlier failures have depleted the pool Of spare links are marked failed.

Figure 5-9 illustrates the steps needed to isolate a node from the layer. Suppose that Node

2 is to be removed from the layer. First the link connecting Node 1 to Node 2 is disabled.

When this step is completed, Nodes 2, 3, 4, 5, and 6 are also isolated from the FTP as

shown in part II. Node 2 is the root of a tree with two branches, each of which must be

reconnected in turn. By enabling the link between Nodes 1 and 6 and disconnecting the

link between Nodes 2 and 4, one of these branches is reconnected to the active layer as

shown in part III. Finally, a link is enabled between Nodes 5 and 6 and the link between

Nodes 2 and 3 is disabled. In this reconfiguration, Node 2 is isolated while preserving

several links in the layer.
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Figure 5-9. Removing A Node And Reconnecting Its Branches

A single node failure can occur: (1) if the failed node is a leaf node, (2) if its retransmission

function still works correctly but its status reporting capability is impaired, or (3) if another

node is responding to this node's address thus making this node appear failed. The failed

node is isolated from the layer, as described in the previous discussion. However, care is

taken not to address this node directly because of the possible addressing problem (the

aforementioned fault scenario 3). After the node is isolated (disconnected from the active

layer path), it is again queried for its status. If a valid response is received indicating the

presence of a node which responds to the addresses of other nodes, the layer is regrown to

isolate this faulty node. Otherwise, an attempt is made to find an alternate route to this

node using any port except its previously failed inboard port. In addition to establishing a

different route to the node, the reconfiguration command sent to this node disables the

failed inboard port.

If the attempt to reconfigure the layer does not succeed in eliminating errors, then the IC

Layer Manager regrows the layer (discussed in the following section). This is the back up

reconfiguration strategy, used when all else fails.

5.2.3.3 IC Layer Growth

Layer growth is the process whereby the links between the nodes in the layer are enabled to

form a virtual bus which supports communication among the layer subscribers (FTPs).

Data flow in the layer is controlled by the configuration of the ports in each node. For a

link to carry data between two nodes, the ports at either end of the link must both be

enabled. Nodes retransmit messages received from an enabled port on its other enabled

ports, but not on the port on which received the message. (The purpose of the

retransmission is to maintain the integrity of the waveform and it only imposes a delay of

one half the transmission clock period.) When a node receives a message addressed to
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itself from any port, disabledor enabled,it carries out the commandencodedin the
messageandthentransmitsits statuson all of its enabledports,including theport which
receivedthemessageif thatport is enabled.A nodeobeysreconfigurationcommandssent
by theIC Layer Managerby enablingordisablingits portsin accordancewith thevalueof
theport enablefield in thecommand. Oncethenew configurationis in effect, the node
returnsastatusmessage.For properoperation,therecanbeno loopsin the layer.A data
bit travels through eachenabledlink exactly once. Further,once it is grown, a layer
operateslike atimedivisionmultiplexbus.

Nodesareaddedoneby oneto thevirtual bus.To determinewhichnodeto addnext,the
IC Layer Managerrefers to theLayerTopology,a databasewhich describesall physical
interconnectionsthatexistin thelayeronanodeby nodebasis.Thealgorithmusedto add
thesenodesgrowsthebus in a treelikemanner. Becauseof its resemblanceto a tree,the
nodesthat arepart of thevirtual busaresaidto bepart of the active tree. The growth
algorithmgeneratesa maximally branching,minimum lengthpath to everynodein the
layer. This configurationis laterchangedin order to repair faults. In additionto joining
layer nodesinto a virtual bus, the growth processis also concernedwith enabling the
communicationpathsto layer subscribers,the remoteFTPs. This is accomplishedby
enablingthe nodeports adjacentto thesedevicesanddeterminingwhetheror not these
componentscorrectly obey theestablishedcommunicationprotocols.The detectionof
protocolviolationsresultsin thesubscriberbeingdisconnected.In fact, thedetectionof a
protocolviolation whenanynew link is calledinto serviceresultsin thedisablingof that
link. Furthermore,thegrowth algorithmmayemploya setof diagnosticteststhatdetect
thepresenceof somemaliciousfailure modes(suchasnodeswhich transmitondisabled
portsor nodesthatrespondto commandsaddressedto othernodes).

The layergrowth algorithmassumesthat, althoughhardwarefaultsmay bepresentin the
layerbeforethegrowthprocesscommences,noadditionalfaultswill occurwhile growthis
takingplace. However,if errorsaredetectedduringgrowthwhich indicateanadditional
failure, thenthe growth processis restarted. If a fault occursrepeatedlyafter a layer is
partiallygrown,anintermittentfailurecanbe inferred. Strategiesto dealwith shortlived,
intermittentfailuresneedto bedeveloped(beyondthescopeof thisfunctionaldesign).

Layergrowth beginsby establishinganactivelink to theroot nodeandensuringthat the
root nodehasanoutboardport to therestof thenodesin the layer. Next, theremaining
nodesareaddedto theactivetree. Any nodesthatarenotconnectedto theactivetreeafter
thisstageis completeareunreachable.After thelayeris establishedthroughtheactiveroot
link, the layer subscribers,thatis theremoteFTPs,areconnectedto the layer. Finally,
statusis collectedfrom all nodesin thelayerto verify thatno failureshaveoccurredin the
layer during the growth process. Figure 5-10 summarizesthe major stepsin the layer
growthalgorithm.Thefollowing discussiondetailsthe logicemployedin eachmajorstep.
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For the growth of a layer to be considered successful, an active root link must connect the

FTP to the layer. This implies the existence of a properly functioning ICIS and a root node

that is able to communicate with the ICIS and at least one adjacent node. Establishing this

connection is a two step procedure. In the first step, the hardware is put in a state which

supports communication between the FTP and the root node. In the second step, the

correct operation of this hardware is verified.

The first step in setting up a root link is to configure the root node so that the port adjacent

to the ICIS is enabled and all of its other ports are disabled. The second step is to verify

that the hardware involved in this root link is operating properly and that the root node can

be used as a springboard to the rest of the layer. The absence of communication errors in

the reconfiguration chain and the corresponding node response is evidence of a properly

functioning communication link between the ICIS and the root node. If communication

errors do not occur, then a determination is made about the root node's ability to function

as a jumping off point for the addition of the remaining nodes in the layer. This decision is

made by finding a link to an adjacent node which can be enabled without errors.

The algorithm for adding nodes to the layer is designed to conduct an exhaustive search for

a properly functioning connection to every node in the layer. The failure of a single port of

a node does not cause the entire node to be considered failed. However, some nodes may

not be reachable by any path. The identity of these unreachable nodes is apparent only after

this phase of the growth process is complete.

Repeat until growth is successful or two attempts fail

layer:

Establish a working connection to a root node.

If an active root link is established then

Add remaining nodes to the layer.

Mark idle nodes failed.

Add Remote FTPs.

Collect Node Status from all layer nodes as

Validate Layer Status.

If no discrepancies in Layer Status then

Layer is grown successfully.

Figure 5-10. The Layer Growth Algorithm

to produce a stable

defined by topology.

This stage of layer growth begins after a root link has been established. The root node

becomes the first entry in a spawning queue, which is a data structure used to control the

growth of the layer. An entry in this queue consists simply of a node that has been

successfully added to the layer but from which growth has not yet taken place. Two

positions are marked in the queue: the top and the next entry. The top holds the node in the

queue from which growth is currently taking place. This node is called the spawning node.
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Thenextentry is thenextemptypositionin thequeue.As nodesareaddedto thelayer,
theyareplacedon the spawningqueueat thenextentry point andthenextentry point is
advancedto anemptypositionin thequeue.As growthof thelayerproceeds,thetopmost
nodein thespawningqueueis removedfrom thequeueandusedasthejumping off point,
or spawningnode,for furthergrowth. Eachnodein thespawningqueueis processedin
turnuntil thequeueis empty.

The spawningnodeis processedonaport by portbasis.The actiontakendependson the
typeof elementthatis adjacentto eachport. If theadjacentelementis aremoteFTP, the
spawningnodeandthe port that facestheFTP are recordedfor.future reference. Such
ports axeenabledafter the growth of the layer is complete. However, if the adjacent
elementis anodewhosestatusis idle,i.e.not yetpartof theactivetree,anattemptis made
to enablethe link to that node(which is referredto asthe targetnode). If theattemptto
enable the link between these nodes is not successful, the link is disconnected.
Alternatively, if the attempt is successful, the target node is placed at the end of the

spawning queue. When all ports of the spawning node have been processed, the next node

in the spawning queue is removed .and it becomes the new spawning node.

Figure 5-11 shows the entries made to the spawning queue for the growth of a fault-free,

six node layer. Node 1, the root node, is the first entry. The three nodes adjacent to Node

1 are each added in turn to the layer. As each node is connected to the virtual path, it is

added to the spawning queue. When all nodes adjacent to Node 1 have been added to the

layer, Node 2 becomes the spawning node. Node 2 has an active link, an idle link adjacent

to Node 3, and an idle link adjacent to Node 4. Since Node 3 is already active, the only

node to be added to the layer from Node 2 is Node 4. The next spawning node is Node 6.

Node 5, the only idle node adjacent to Node 6, is the last node added to the layer. Nodes

3, 4 and 5 each become a spawning node. However, since none of these nodes is adjacent

to an idle node, no further nodes are added to the layer or to the spawning queue which is

now empty.

Spawning Queue

1 4- Top

2

6

J

"T-4- Next

I FTP J

Figure 5-11. No Fault Growth Algorithm
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Thegrowthalgorithmalsodetectsandisolatesbabblinglayercomponents,thusmakingit a
usefulbackupstrategemfor layer maintenance.Whenaport of aspawningnodeadjacent
to ababblingport isenabled,thebabbleris detectedbecauseits transmissionsinterferewith
theresponseof thespawningnode. Following thedetectionof thebabbler,the spawning
nodeis sentareconfigurationtransactioninstructing it to disabletheport adjacentto the
babbler,thus isolating the babblerfrom therestof theproperly functioning layer. The
methodworks,becausethelayer links are full duplex (separate physical data links exist for

the transmission and reception of data). As a result, the reconfiguration command reaches

the spawning node through a path not corrupted by the babbler.

The use of the growth algorithm to isolate a node that is babbling on all of its ports is

illustrated in Figure 5-12. Node 2 is shaded to denote it as the babbler. When Node 1 is

the spawning node, the attempt to connect Node 2 falls, because the babbler violates the

established communication protocols. Hence, Node 2 is not added to the spawning queue.

Nevertheless, Nodes 6 and 3 are added as before. Node 6 is the second spawning node

from which Nodes 4 and 5 are added to the active tree. When Node 3 becomes the

spawning node, a second attempt is made to reach Node 2. This attempt is made, because

a node may be babbling on one port only. When this attempt fails, Node 4 becomes the

spawning node. Since Node 2 is still not in the active tree, a third and final attempt to reach

Node 2 is made from Node 4. Although Node 2 is babbling, the ports facing it on Nodes

1, 3, and 4 are disabled and therefore its faulty transmissions cannot disturb other layer

communication.

Spawning

1

6

3

4

5

Queue I FTP I
Top

4- Next

¥

Figure 5-12. Layer Growth Used To Isolate A Babbling Node

As each node is added to the layer, a series of fault detection diagnostic tests may be

performed. The tests are sequential in nature, and if any test fails, the remaining tests in the

sequence are not performed. If this test sequence is employed throughout the layer growth,

every layer rink will be exercised.
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Thefirst diagnostictestdeterminesif the link betweentwo nodescanbeactivated. It is
performedbyenablingthelink betweenthenewlyaddednodeandits adjacentnode. If the
attemptto enablethe link is successful,the link is left in theenabledstatesothat thenext
testcanbeexecuted.If thelink is notenabled,theportsoneitherendof the link arefailed.

Thesecondtestdetermineswhetheror not the adjacent node transmits on a port after it has

been disabled. In this test, a configuration command is sent to the adjacent node over the

newly enabled link instructing it to disable all of its ports. The node protocol is such that it

carries out this command before transmitting a reply. A properly functioning node

transmits a reply on all enabled ports to every command it receiyes. Since no ports are

enabled, this message should not be transmitted. Thus, the node passes this test if a reply

to the command is not received. If a node reply is received, then it is considered failed and

its status is marked accordingly. Because the execution of this test, the adjacent node has

all of its ports disabled prior to starting the third test.

The third test determines whether or not the newly added node retransmits a message on a

disabled port. This test requires three transactions to be transmitted on the layer. The first

transaction is sent to the newly added node commanding it to disable all of its ports except

its inboard port (the port that connects the node to the established layer). The second

transaction is sent to the adjacent node commanding it to enable the port facing the newly

added node for one transmission only. The third transaction is sent to the newly added

node asking for its status. If the newly added node is functioning properly, it will not

retransmit any messages, including the command making up the second transaction, to the

adjacent node. On the other hand, if it has failed such that it does retransmit a message on a

disabled port, the adjacent node will send a reply which may or may not be transmitted

back to the ICIS. In either case, the transmission of this me_sage causes the valid message

detector for the port facing the adjacent node to record the transmission and to return this

information as part of its status message. The newly added node passes this third test if no

message from the adjacent node is received and the status indicator for the port in question

shows no valid message received on that port. However, if it fails the test, the status of the

node is marked failed.

When the above three tests have been performed for every idle port of the newly added

node, the newly added node remains configured such that only its inboard port is enabled.

It is then ready for the last test.

If the preceding tests are completed without error, the fourth test is performed. This final

test determines if the newly added node responds to commands sent to other nodes in the

layer. In this test, each node in the layer is commanded to report its status, whether or not

it is in the active tree. If an unconnected node responds to this command, it implies that the

most recently connected node is responding to this address. Because of this protocol

violation, this node must be disconnected from the active tree. Furthermore, its status is

marked failed, since the address decoding function of the node is faulty. It is also possible

that a previously connected node could respond with errors. This means that either this
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nodehasrecentlyfailed or the most recently added node is talking out of turn. This last

added node is then removed from the layer as described above. The node (or nodes) which

had errors on the previous test are again queried for status. If the error indicators are gone,

it conf'trrns the talker out of turn hypothesis, and the status of the removed node is set to

failed. If the errors are still present, it indicates that a failure has occurred during the

growth process. In the former case, the growth process is continued. In the latter case, the

growth process is restarted.

After all non-failed nodes are added to the virtual layer path, the ports adjacent to remote

FTPs are enabled. An FTP which is facing a disabled port w il! not detect any layer

activity. Accordingly, it may be attempting to use the layer at the time that the port is

enabled. This could result in errors being detected in the node's reply to its configuration

command. Thus any errors in the node status, which is returned after enabling the port

towards a remote FTP, are ignored.

After the initial growth of the layer is completed, the status collection chain is executed

through the root link. The chain response is analyzed to detect any discrepancies between

the node status perceived by the IC Layer Manager and the status returned by this chain.

This examination is performed to confirm or disprove the assumption that failures did not

occur during the growth. If the data returned by this chain indicates the presence of a

babbler or failed nodes which the IC Layer Manager reported as active, then a discrepancy

exists between the actual state of the layer and its state as decided during layer growth. It

cannot be determined whether these failures occurred during or after the growth of the

layer. Thus, the layer is regrown. If this second try is unsuccessful, an intermittent failure

exists on the layer. The present algorithm does not handle intermittent faults. Hence, the

layer is declared to be inactive.

5.2.4 IC Network FDIR - Layer Status Notification

After the IC Layer Manager has reconfigured the IC layer, the IC Network Manager and

System Manager are notified. If the layer has been repaired successfully, its status is

marked to in_service. Alternatively, if the layer could not be restored, it is kept

out_of_service. In either case, the IC Network Manager broadcasts a messages to all FTPs

informing them of the updated layer status.

5.3 IC Network Growth Software Specifications

5.3.1

Process Name:

Inputs:

IC Network Manager

Layer FDIR Request

Layer Identifier

Layer Topology

Layer Usability
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LayerStatus

Outputs: Layer Status

Requirements

Reference:

IC Network Growth Functional Requirements,

Section 5.1

Notes: None.

Description:

Each triplex or higher redundancy FTP may create an instance of the IC Network Manager

process to attempt to grow the IC Network. Since multiple FTPs may attempt the IC

network growth but only one completes it, only one FTP that activates this process will

grow the network. If an FTP does not perform the IC network growth, the associated

instance of the Network Manager is deactivated and the process becomes an Alternate IC

Network Manager. Such a Manager is only re-actuated if a network FDIR function is

migrated to the FTP that hosts it.

Conversely, if this IC Network Manager does grow the IC network, it allocates and

initializes three IC Layer Managers. Each Layer Manager is assigned to a particular layer

and is responsible for the corresponding layer FDIR. After the Layer Managers are

activated and initialized, the IC Network Manager suspends itself.

The arrival of a network FDIR request causes the IC Network Manager to resume. The

request identifies a layer that is speculated to have a faulty component. The IC Network

Manager takes the IC layer out of service, broadcasts this updated layer status to all FTPs,

and sends a repair command to the corresponding IC Layer Manager.

When the IC Layer Manager completes the FDIR process, it notifies the IC Network

Manager process by setting the Layer Usability field to repaired and informs it of the layer

status. The Network Manager process subsequently informs the System Manager and

broadcasts the updated layer stat.us to all FTPs. After the layer status message has been

sent, the IC Network Manager suspends until another IC network FDIR request is posted.

5.3.2

Process Name: Send Site is Accessible Message

Inputs: FTP Identifier

Outputs: Message to System Manager

Requirements

Reference:

IC Network Growth Functional Requirements,

Section 5.1.2

Notes: None.
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Description:

The Send Site is Accessible Message process is part of the IC network initialization

protocol. It is invoked by either the FTP Resource Allocator or the IC Network Manager to

inform the System Manager that this FTP has completed its local initialization procedure.

The process uses the FTP ID as an input parameter and employs the IC Communication

Services to broadcast the Site is Accessible message.

5.3.3

Process Name: Send Network is In_Service Message-

Inputs: FTP Identifier

Outputs: Network is In_Service Broadcast

Requirements
Reference:

IC Network Growth Functional Requirements,

Section 5.1.2, 5.1.3

Notes: None.

Description:

The Send Network is In_Service Message process is part of the IC network initialization

protocol. It is invoked by the System Manager to inform all activated FTP Resource

Allocators that the IC network is in_service and that the System Manager has been assigned

to an FTP. The process uses the FTP ID as an input parameter and employs the" IC

Communication Services to broadcast the Network is In_Service message.

5.3.4

Process Name: Acknowledge Site is Accessible Message

Inputs: Site is Accessible Message

Initialized FTPs

Redundancy of Initialized FTPs

Location of System Manager

System Status

Outputs: Siteis Accessible Acknowledgement

Initialized FTPs

Redundancy of Initialized FTPs

Location of System Manager

System Status
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Requirements

Reference:

IC Network Growth Functional Requirements,

Section 5.1.2

Notes: None.

Description:

The Acknowledge Site is Accessible Message process is part of the IC network

initialization protocol. It is invoked by the System Manager to inform all activated FTP

Resource Allocators that the IC network is in_service and that the FTP which sent the Site

is Accessible message has completed its local initialization. This acknowledgement is

composed of: the FTPs that have completed initialization, the redundancy levels of these

initialized FTPs, the location of the System Manager, and other status information.

The process employs the IC Communication Services to broadcast the Site is Accessible

acknowledgement.

5.3.5

Process Name: Perform Network Diagnostics

Inputs: IC Network Topology

IC Network Configuration

IC Network Status

Status Collection Report

Outputs: IC Network Status

IC Network Configuration

Requirements

Reference:

IC Network Growth Functional Requirements,

Section 5.1.8

Notes: None.

Description:

After the IC network is grown and all FTPs are accessible, the Perform Network

Diagnostics process is called by the IC Network Manager. This procedure is used to detect

hardware faults in the spare network components, to verify that network elements were not

falsely failed during the growth, and to exercise the network nodes. It executes the

diagnostic tests in a centralized manner on a layer by layer basis.

To determine if faults exist in an IC layer's spare links and nodes, the virtual

communication path is reconfigured to employ these components. After the IC growth is

5-35



completed,the IC Network Manager is capable of communicating with each node in the

network. To verify that a spare element is working, it is cycled into the active path (by

executing a reconfiguration chain from the ICIS interface) and an attempt is made to again

communicate to all network nodes (via the Layer Status Collection process as described in

Section 5.4.7.1). If these nodes can still be reached without communication errors, then

the newly utilized component is deemed working. Alternatively, if transmission errors

occur, then the previous virtual path is restored and the element under test is marked as

failed. This process is continued until all spare network components are examined.

To verify that the components failed during the IC network growth were not falsely failed,

the IC Network Manager attempts to utilize these elements. If a failed link is being re-

tested, then the Manager cycles it into the active virtual path and attempts to communicate to

the network nodes. If all nodes respond without errors (again using the Layer Status

Collection procedure), then the link is presumed to be working. Conversely, if errors are

encountered, then the previous path is restored and the component is confirmed to be

faulty.

The diagnostic tests performed to recheck a failed node differ slightly from those used to

test a failed link. Similar to the link verification process, the failed node is tested by

attempting to communicate to it. However, each node can typically be reached by multiple

paths. The diagnostic tests select one possible route, use a reconfiguration chain to actuate

the path, and process the response from the chain to determine if the node was reached

successfully. If errors were observed, then this route to the node is considered faulty, and

another is selected. If all paths to the node under test have been checked and are faulty,

then the node is marked as failed. However, if a path to the node is found that appears

error-free, then the node is deemed working. After such a node is reinstated as working,

then any links that are now spare are checked for faults.

These diagnostic tests are also performed to exercise and stress the network nodes. The IC

network growth focuses on the construction of a virtual path. This growth process does

not comprehensively check the network nodes, because of the possibility of network

contention. Accordingly, these diagnostics are employed to verify that all nodes operate as

expected. For example, these tests verify that the nodes do not transmit on disabled ports,

do not respond to the wrong address, and are capable of quick reconfiguration.

As stated earlier, several of the network diagnostic tests utilize the Layer Status Collection

procedure. The Collection algorithm returns a Status Collection Report. This Report

represents the results of a preliminary error analysis that is conducted on the nodes' status

response. This Report is reviewed by the Perform Network Diagnostics process to

determine if errors occurred in a particular test.
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5.3.6

Process Name: IC Network Growth

Inputs:

Outputs:

IC Network Topology

IC Network Configuration

IC Network Status

Iteration Results

Iteration Completed

Error Analysis Report

IC Network Status

IC Network Configuration

Network Grown

Network Grown by This FTP

Requirements

Reference:

IC Network Growth Functional Requirements,

Section 5.1.5

Notes: None.

Description:

The IC Network Growth process is responsible for executing the IC network growth

algorithm. It repeatedly invokes the Execute Iteration function to incrementally add nodes

to the IC network. After each growth iteration has completed, it calls the Iteration Error

Analysis procedure to decide if the nodes were appended correctly. If communication

errors occur in an attempt to add a set of nodes, the IC Network Growth process

determines if contention occurred or hardware faults exist. Further, for each step of the

growth, it decides which set of nodes to add next and by which routes to connect them.

First, this process enters an initialization phase. This phase involves setting: the status of

the nodes and ports to idle (which initializes the IC Network Status database), each port of

IC Network Configuration to disabled, the Network_Grown flag to false, and the

Network_Grown_by_This_FTP flag to false.

As stated earlier, this process grows the IC Network incrementally. Each increment, it tries

to append three target nodes to the established IC network path. It determines the next

nodes to add, the path by which these nodes can be reached, and initializes the required

reconfiguration chains and data in the ICIS Dual Ported Memory to establish this route. It

then invokes the Execute Iteration process to attempt to create the path and waits for the

iteration to complete.
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Thecompletionof eachgrowthiterationis indicatedbytheIterationCompletedflag. When
theflag is set,theIC NetworkGrowthprocesscallstheIterationErrorAnalysisfunctionto
determineif errorsdisruptedtheexecutionof reconfigurationor statuscollectionchains.
The Error Analysis processqueriestheICIS registersandnodes'responsedatato detect
the presenceof a transmissionerror (or errors). This procedurereturnsits resultsin the
Error Analysis Reportrecord. TheIC NetworkGrowth function examinesthisrecordto
decidetheresultantcourseof action. If errorswerenotencountered,theNetwork Status
andNetworkConfigurationdatabasesareupdatedtoreflect theadditionof thetargetnodes.
Alternatively, if oneor moreerrorsoccurred,thisprocessfollows thegrowthalgorithm,as
describedin Section5.1.5,to distinguishbetweennetworkcontentionandhardwarefaults.

If anerrorpatternindicatesthatcontentionfor thenetworkgrowthoccurred,this process
calls theBack Off procedure,providing theFTP ID asan input parameter.On theother
hand,if hardwarefaults on one or more layersarehypothesized,then it examinesthe
Network Topologywith respectto speculatedfaults and,if possible,devisesanalternate
routeto thetargetnodes.Subsequently,thechainsanddatain theICISDPM areupdated,
andtheExecuteIterationprocedureis calledagain.

The growth of the IC network is composedof threegeneralsteps:(1) establisha root
connection,(2) addthenetworknodes,and(3) enabletheremoteFTPs. Initially, theIC
NetworkGrowthalgorithmattemptsto createthreeroot link connectionsto theIC network.
The establishmentof suchconnectionsrequiresthat theroot nodesbeconfiguredsothat
their portswhichfacetheFTP(thatis performingtheIC networkgrowth) areenabled.If
oneor moreof thesecommunicationlinks is faulty, theFTPcannot continuethegrowth
and backsoff. Conversely,if theselinks areestablished,thentheprocessbeginsto add
thenodesto theIC network.

The algorithm for determiningthenext setof nodesto appendto the IC networkpathis
similar to thatemployedfor theIC layergrowth. It usestheNetworkTopology,Network
Status,andNetwork Configurationdatabasesto decidewhichnodescanbeaddedandthe
route to reachthem. Furthermore,it utilizesthespawningqueuemethodologyasdetailed
in Section5.2.3.3.

Finally, afterall of thereachablenodeshavebeenconnectedto theIC network,theremote
FTP subscribersaregivenaccessto thenetwork. This is performedby enablingthenode
portsthatfacethesesites.

If this processbacksoff, thenwhenits backoff periodexpires,it invokestheSendSiteis
AccessibleMessageprocess.TheSiteisAccessibleprocessis calledto determineif theIC
network wasgrown while theFTP wassuspended.If the networkhasbeenestablished,
theIC Network Growth processsetstheNetwork_Grownflag to true andreturnsto the
calling procedure.If theIC networkhasnotbeenconstructed,it re-attemptsto performthe
growth.
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If this processcompletesthe growth of the IC Network, it notifies the FTP Resource
AllocatorandSystemManagerby settingtheNetwork_Grown_by_This_FTPFlag.

5.3.7

Process Name: Execute heration

Inputs: IC Network Topology

IC Network Configuration

IC Network Status

Chain to Add Target Nodes

Outputs: IC Network Status

IC Network Configuration

Iteration Completed

Iteration Results

Requirements

Reference:

IC Network Growth Functional Requirements,

Section 5.1.5

Notes: None.

Description:

The Execute Iteration process is called by the IC Network Growth procedure to add three

target nodes to the established virtual communication path. This process attempts this

addition by executing the three steps that comprise the iteration:

1. Request the status of thepreviously added nodes.

2. Execute a reconfiguration chain to append the three target nodes.

3. Request the status of the previously added nodes and the target nodes.

This is completed by executing three procedures: Execute Step 1 of the Iteration, Execute

Step 2 of the Iteration, and Execute Step 3 of the Iteration.

This process correlates the error information returned from the aforementioned steps and

uses the Iteration_Results record to send the information to the IC Network Growth

procedure. In addition, the completion of an iteration is signaled by setting the

Iteration_Completed flag.
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5.3.7.1

Process Name:

Inputs:

Outputs:

Requirements

Reference:

Notes:

Description:

Execute Step 1 of the Iteration

Node Status Collection Chain

Chain Data Response

IC Network Growth Functional Requirements,

Section 5.1.5

None.

The Execute Step 1 of the Iteration executes the Node Status Collection Chain which

queries each node in the IC network (whether connected or not) for its status. The process

saves the relevant ICIS register information and the nodes' status response (in the Chain

Data Response record) to be subsequently examined. This information must be recorded

after the execution of the chain, because the execution of steps 2 and 3 over-writes the

return data.

5.3.7.2

Process Name: Execute Step 2 of the Iteration

Inputs: IC Network Reconfiguration Chain

Outputs: Chain Data Response

Requirements

Reference:

IC Network Growth Functional Requirements,

Section 5.1.5

Notes: None.

Description:

The Execute Step 2 of the Iteration executes the IC Network Reconfiguration Chain which

attempts to configure three target nodes so as to add them to the established virtual IC path.

The process saves the relevant ICIS register information and the nodes' status response (in

the Chain Data Response record) to be subsequently examined. This information must be

recorded after the execution of the chain, because the execution of step 3 over-writes the

return data.
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5.3.7.3

Process Name: Execute Step 3 of the Iteration

Inputs: Node Status Collection Chain

Outputs: None

Requirements

Reference:

Notes:

IC Network Growth Functional Requirements,

Section 5.1.5

4

None.

Description:

The Execute Step 3 of the Iteration executes the Node Status Collection Chain which

queries each node in the IC network (whether connected or not) for its status. The process

does not read the relevant ICIS register information or the nodes' status. This data is read

directly by the Iteration Error Analysis procedure.

5.3.8

Process Name: Iteration Error Analysis

Inputs: IC Network Topology

IC Network Configuration
IC Network Status

Iteration Results

Outputs: IC Network Status

IC Network Configuration

Error Analysis Report

Requirements

Reference:

IC Network Growth Functional Requirements,

Section 5.1.5

Notes: None.

Description:

This Iteration Error Analysis process reviews the results of the three steps of the iteration to

determine if errors occurred during their execution. The data from steps 1 and 2 are passed

into this procedure while the data from step 3 is retrieved directly from the ICIS DPM. The

results attained from this examination are returned to the IC Network Growth process in the

Error Analysis Report.
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TheresultantError Analysis ReportprovidestheIC Network Growth Algorithm with a
summaryof theerrorinformationobtainedfrom apreliminaryanalysisof theresponsedata
from thereconfigurationandstatuscollectionchains. WhentheICIS transmitsmessages
on the layer to a node, it observesaspectsof the communicationand records those
observationsin registersandbuffersfor laterprocessing.This constitutesa first stage of

fault detection, and it includes detection of: the failure of a node to respond to a command

in a reasonable length of time, the presence of transmission errors on the layer, an incorrect

number of bytes in a response, and other violations of the communication protocol. In

addition to detecting errors on transactions to individual nodes, the overall performance of

the layer is monitored for failures which impede the proper functioning of the contention

sequence. These failures include a babbler which is flooding the bus with meaningless

signals and a data line which is holding the layer in a "stuck on one" condition.

This Error Analysis Report presents a summary of the information provided by the ICIS

with conclusions drawn about the following error conditions: an interface failure, a

babbler, and individual errors detected for each node. If the summary reports that an

interface failure has occurred, it also states whether the cause is a failed ICIS or a failed

channel connected to the active ICIS. If the summary reports that a babbler is present on

the layer, it also specifies whether the babbler was detected during contention for the layer

or during data transmission. When either of these errors are present, no further data is

provided since the integrity of this data is in question. Finally, if neither an interface failure

or a babbler is detected, an error indicator is provided for each active node in the layer.

This error indicator simply notes that an error has occurred. The error could be due to a

variety of causes, including a no response error, an HDLC protocol violation, or a check

sum error. The type of error is is not passed back in the Error Analysis Report since the IC

Network Growth Algorithm does not require this level of granularity.

5.3.9

Process Name:

Inputs:

Outputs:

Requirements

Reference:

Re-execution Delay

FTP Identifier

None

IC Network Growth Functional Requirements,

Section 5.1.5

Notes: None.
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Description:

This Re-execution Delay process detains the re-execution of a Growth Iteration to avoid

successive network contention incidences. Each FTP will delay a different non-zero length

of time before re-executing steps 1 - 3. This delay is incorporated to ensure that if two or

more FTPs "directly contend" during the first execution of the chains, then they will not

contend during the second execution. (In this context, direct contention occurs when two

or more chains are executed at _ the same time by different FTPs, thus causing the

loss of or errors in the expected node responses). The delay that is imposed must be

greater than the time required to execute and process steps 1 - 3 (the Delay >= FTP_ID *

worst case time to process the iteration).

5.3.10

Process Name: Back Off

Inputs: FFP Identifier

Worst Case Growth Time

Outputs: None

Requirements

Reference:
IC Network Growth Functional Requirements,

Section 5.1.7

Notes: None.

Description:

If an FTP that is growing the IC network detects that another FTP is also attempting the

growth, it will back off. That is, the IC Network Manager on this site stops performing the

growth and delays a predetermined period of time. This back off period is calculated using

the following equation:

Delay = [((# of triplex FTPs) - 1) + ((FTP_ID - 1) * 2)] * (Worst Case Grow Time)

The Worst Case Grow Time is the primary factor in the back off delay, because it is the

basic offset necessary to avoid network contention. The ((# of triplex FTPs) - 1)

component is used to create a non-zero offset that is based on the maximum number of

FTPs that could contend for the growth. Further, the (FTP_ID - 1) component is utilized

to prioritize the FTPs contending for the growth. Finally, the factor of 2 is required to

allow enough time to grow the IC network when consecutive numbered sites contend and

back off.
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The backoff equationis not designedto minimize the IC network growth time in the
presenceof networkcontention. Theequationis designedto ensurethatthe IC network
canbesuccessfullygrownevenif two or moreFTPscontendfor growthof thenetwork.

This Back Off processemploystheaforementionedequationto determinethe backoff
periodandthensuspendstheIC NetworkManagerfor this timeperiod.

5.4 IC Network FDIR Software Specifications

5.4.1

Process Name: IC Layer Manager

Inputs: Layer Identifier

Layer FDIR Request

Layer Topology

Layer Status

Layer Topology

Outputs: Layer Status

Layer Usability

Layer Configuration

Requirements

Reference:

IC Network FDIR Functional Requirements,

Section 5.2.1, 5.2.3

Notes: None.

Description:

An instance of this process is created for each layer of the IC network. Each process

remains in a quiescent state until it is activated by the IC Network Manager. At any given

time, only one actuated IC Layer Manager exists for a specific layer. The activation of this

Layer Manager only requires the scheduling of the process on the associated FTP.

Memory allocation, process instantiation, and the initialization of variables used by this

process will already have taken place. As a result, the actuation of a Layer Manager can be

accomplished very quickly if necessary.

When a Layer Manager process is created, some software initializations take place which

need to be performed by this process only once. These include: obtaining the Layer

Identifier of the layer it will manage, reading the Layer Topology from the Layer Topology

Database, and retrieving a copy of the Layer Status. This sequence is accomplished during

the power on phase of system operation. This preliminary work is not considered part of

the routine operation of the Layer Manager.
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Once it has been activated, the Layer Manager is responsible for maintaining its assigned

layer. It uses the Layer Status Collection procedure (discussed in Section 5.4.7.1) to query

the layer to determine: (1) if a fault exists and (2) if the interface from this FTP to the layer

is working. If this query does not detect a fault, then the IC Layer Manager presumes that

the fault was transient or lies external to the layer. Accordingly, the process informs the IC

Network Manager and returns the layer status to in_service. Alternatively, if the FTP

interface to this layer is faulty, it notifies the IC Network Manager and FTP Resource

Allocator and assists in the migration of the Layer Manager function. If the interface is

working and a layer fault exists, the IC Layer Manager invokes the error analysis and

reconfiguration subprograms to perform layer FDIR (described in Sections 5.4.7).

Each time the Layer Manager initializes or reconfigures a layer in response to a call from the

IC Network Manager, it indicates that it has completed its actions by writing a value of

repaired to the Layer Usability field. In addition, it indicates the status of the layer in the

Layer Status field, either in_service or outof_service. The IC Layer Manager also informs

the IC Network Manager of the existence of hardware faults and the occurrence of transient

faults.

5.4.2

Process Name:

Inputs:

Outputs:

Requirements

Reference:

IC Layer Growth

Layer Identifier

Layer Topology

Diagnostics Option

Layer Status

Layer Configuration

Layer Status

Layer Configuration

IC Network FDIR Functional Requirements,

Section 5.2.3.3

Notes: None

Description:

This process makes two attempts to grow the designated layer which is specified in the IC

Layer Topology Database. The Layer Topology describes all of the interconnections which

exist in the layer on a node by node basis. Layer growth is accomplished by a set of nested

subprograms. The outermost subprogram verifies and validates the results of a second

inner subprogram which assumes that, although hardware faults may be present in the layer
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before the growth processcommences,no additional faults will occur while growth is
beingperformed. This inner subprogramconductsthe majority of the layer growth. It
callsothersubprogramsto performthelayergrowthandthenreturnsa booleanparameter
to its caller indicatingwhetheror not thelayerhasbeengrownsuccessfully.For growthof
a layerto beconsideredsuccessful,anactiveroot link mustconnecttheFTP to thelayer,
and all non-failed nodesin the layer must bepart of theactive tree. If the subprogram
indicatesthat growth is not successful,it is calleda secondtime. Alternatively, if the
growth is successful,theoutermostsubprogramof theIC LayerGrowthprocessexecutes
a statuscollection chain. Further, it analyzesthe resultantstatusdata looking for any
discrepanciesbetweenthe nodes'statusasperceivedby the Growth procedureandthat
returnedby thechain. This is to confirm or disprovethe assumptionmadeby the inner
growthsubprogramthatfailuresdid notoccurin thelayerduringgrowth.

If thedatafrom thisstatuschainindicatesthepresenceof a babbler,a failedICIS, or failed
nodeswhich the growthprocessreportedasactive,thena discrepancyexistsbetweenthe
real stateof the layer andits stateasrecordedby theinner subprogram. It cannot be
determinedwhether thesefailures occurredafter or during the layer growth. Thus,if a
discrepancyexists, the layer is regrown. If the secondtry is unsuccessful,a serious
problemexistson thelayerrequiringeitherafunctionmigrationor operatorinterventionto
correcttheproblem.Thechoiceof actionis madeby theSystemManager.

As mentioned,faultscanoccurduringlayergrowth. If such faults are detected, the growth

process is restarted. This subprogram tries up to two times to grow the layer. If faults

continue to occur during the growth process, then the subprogram informs the IC Layer

Manager that growth was not successftil.

The growth of the layer begins by establishing an active root link to the root node and

ensuring that this root node has a port which can be used as the springboard to the rest of

the nodes in the layer. If the root link is working, the remaining nodes are added to the

active tree. This process conducts an exhaustive search for a properly functioning

connection to every node in the layer. Once a particular connection is established, the

status of the associated node is upgraded to active. The failure of a single port of a node

does not cause the entire node to be considered failed. Some nodes may not be reachable

by any path. However, the identity of these unreachable nodes will be apparent only after

this phase of the growth process is complete. If a node has a status of idle after layer

growth is completed, then it is not reachable by any port and its status is changed to failed.

In addition, after the layer is established through the active root link, the ports adjacent to

remote FTPs are enabled.

The growth process is summarized below. Further details on each aspect of the process

are available in the indicated sections.
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Repeatuntil growthis successfulor twoattemptsfail to producea stablelayer
Establishaworkingconnectionto arootnode(5.4.3)
If anactiveroot link is establishedthen

Add remainingnodestothelayer(5.4.4)
Mark idlenodesfailed
Add RemoteFTPs(5.4.6)
CollectNodeStatusfrom all layernodesasdefinedby topology(5.4.7.1)
ValidateLayerStatus
If nodiscrepanciesin LayerStatusthen

Layeris grownsuccessfully

5.4.3

Process Name: Establish Root Link

Inputs: Layer Identifier

Layer Topology

Diagnostics Option

Layer Status

Layer Configuration

Outputs: Layer Status

Layer Configuration

Spawning Queue

Active Root Link

Requirements

Reference:

IC Network FDIR Functional Requirements,

Section 5.2.3.3

Notes: None

Description:

This process is the first step in the growth of a layer. Its job is to set up a properly

functioning a connection to the layer. The hardware involved in the connection consists of

an ICIS, the root node, and the link between them. Establishing the connection is a two

step procedure. It requires that this hardware be configured to support communication

between the FTP and the root node and that the operation of this hardware be verified.

If a successful connection to the root node can be made, the value of the Active Root Link

flag is set to true to indicate to the calling subprogram that a communication link has been

established. Additionally, the Spawning Queue is initialized with the root node.

Conversely, if no root link is established, the value of the Active Root Link flag is set to

false.
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To setup aroot link, theroot nodeisconfiguredsothatits port facing theICIS is enabled
andall of its otherportsaredisabled.This is accomplishedbypreparingareconfiguration
command(causingit to configureits portsasdescribed)andthenexecutingachainwhich
sendsthis commandto theroot node. After thechain is executed,theresponsefrom the
root nodeis examinedto determine if any communication errors occurred.

The second step in setting up the root link is to verify that the communication hardware is

operating properly and that this root node can be used as a springboard to the rest of the

layer. The absence of errors in the first step is evidence of a properly functioning full

duplex communication link, and it implies that the ICIS and node hardware is fully

operational. If the Diagnostics Option has been selected, a full set of diagnostic tests are

conducted on the root node. These are described in more detail in Section 5.4.5. If the

root node passes all the diagnostic tests or if the tests are bypassed because the Diagnostics

Option is not chosen, a determination is made about the ability of the root node to function

as a jumping off point for the addition of the remaining nodes in the layer. If diagnostic

tests are performed, this determination is made by identifying a non-failed port on the root

node which is adjacent to another node. This is performed by querying the Layer

Topology and the Node Status information. However, in the case when diagnostic testing

is bypassed, this is accomplished by finding a link to an adjacent node which can be

enabled to support full duplex communication. If such a link is found, the status of the

root node, its port facing the ICIS, and the ICIS interface is marked active. Furthermore,

the configuration of the root node is recorded in Layer Configuration. The Layer

Configuration indicates that this node's enabled port is designated as Inboard and the other

ports are specified as Idleport. This process is then complete.

The preceding paragraph describes the actions taken by this process if no protocol errors

are detected when the configuration command is sent to the root node. When errors are

detected, they are processed before a second try is made. The error processing proceeds as

follows. If the error detected is a channel failure, a retry is not undertaken since it is

unlikely that the channel can be restored in time to make this a viable root link. Instead, the

Interface Status is marked Failed Channel and the Layer Manager informs the IC Network

Manager. If any other errors are detected such as no response or HDLC protocol errors,

the same configuration chain is simply run a second time. If errors are detected on the

second try, the ICIS and the status of the port adjacent to the ICIS are marked failed, and

the IC Layer Manager informs the IC Network Manager of the fault.

5.4.4

Process Name: Adding Nodes to Layer

Inputs: Layer Identifier

Layer Topology

Diagnostics Option
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LayerStatus
LayerConfiguration
SpawningQueue

Outputs: LayerStatus
LayerConfiguration
LayerSubscribers

Requirements

Reference:

IC Network FDIR Functional Requirements,

Section 5.2.3.3 _

Notes: None

Description:

This growth algorithm generates the shortest path from the source FTP to any node in the

layer. Furthermore, if a path exists to any node in a layer, this algorithm ensures that it will

be found and activated, even if the layer is degraded by failures.

This subprogram is called into service after Establish Root Link (Section 5.4.3) has

established a fully operational link to a root node of this layer. The root node is the first

entry in the spawning queue, a data strucnare that is used to control the growth of the layer.

An entry in the queue consists simply of the number of the node which has been

successfully added to the layer but from which growth has not yet taken place. Two

pointers are used to mark positions in the queue: the Top and the Next Entry. The Top

points to the node in the queue from which growth is currently taking place. This node is

called the spawning node. The Next Entry points to the next empty position in the queue.

As nodes are added to the layer, they are placed on the spawning queue at the Next Entry

point and the Next Entry point is incremented to an empty position in the queue. The

spawning queue thus grows from the bottom. As growth of the layer proceeds, the

topmost node in the spawning queue is removed from the queue and used as the jumping

off point for further growth. The growth algorithm then enters a loop in which each node

in the spawning queue is processed in turn until the spawning queue is empty.

The processing of the spawning node proceeds on a port by port basis. The action taken

depends on the kind of element found adjacent to each port. The identity of that element is

obtained from the Layer Topology. If the adjacent element is a remote FTP, the spawning

node and the port of the spawning node that faces the FTP is placed on the subscriber list.

These ports will be enabled after the layer growth is complete. However, if the adjacent

element is a node whose status is idle, i.e. not yet part of the active tree, an attempt is made

to set up a functional link to that node (which is referred to as the target node). If the

attempt is successful, the target node is placed at the end of the spawning queue. Creating

such a link requires that a port of the spawning node and a port of the target node be
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enabled;thespawningnodeis enabledfirst. If theattemptto enablethelink betweenthese
nodesis not successful,the nodesaredisconnected.If thereasonfor the failure is the
detectionof a babbler,this subprogramrunsa babblertest to ensurethat theattemptto
disconnectthebabblingnodewassuccessful. If it is not, anexceptionis raisedwhich
causesthe growth to beginagainfrom the start. If the attemptto enablethe link is not
successful,the link is left in andisconnectedstateandthestatusof thecorrespondingtwo
portsaremarkedfailed. If thelink is connectedsuccessfullyandtheDiagnosticsOptionis
not selected,thetargetnodeis addedto the spawningqueue,its statusis markedactive,
andthe statusof theportsconnectingthe spawningnodeandthe targetnodearemarked
active. Additionally, the updatedconfiguration of the spawning and target nodesis
recordedin Layer Configuration(theconfigurationof thespawningnode'sport is marked
outboardandtargetnode'sport is markedinboard,reflectingtheflow of datawith respect
to theICIS). However,if theDiagnosticOptionis selected,thetargetnodeis subjectedto
a setof diagnostictestswhich it must passbeforebeingaddedto the spawningqueue.
Thesetestsaredescribedin Section5.4.5. If it doesnotpassthesetests,thestatusof the
targetnodeis markedfailed. If it passesthediagnostics,it is addedto thespawningqueue
andthevariousstatusfields areupdatedasbefore. Whenall portsof the spawningnode
havebeenprocessedin this way, thenext nodein thespawningqueuebecomesthenew
spawningnode. Layer growth continues until the spawning queue is empty.

As mentioned above, this algorithm detects and isolates babbling layer components, thus

making it a useful backup tool for layer maintenance. When a port of a spawning node

adjacent to a babbler is enabled, the babbler is detected, because its babbling transmissions

interfere with the spawning node's status report (which is sent following the node's

reconfiguration). Following the detection of the babbler, the spawning node is sent another

command instructing it to disable the port adjacent to the babbler, thus isolating the babbler

from the rest of the properly functioning layer. The method works because the layer links

are full duplex and the reconfiguration command will reach the spawning node through the

data line not corrupted by the babbler.

5.4.5

Process Name: Diagnostic Testing

Inputs: Node Under Test

Inboard Port of Node Under Test

Layer Identifier

Layer Topology

Layer Status

Layer Configuration

Outputs: Layer Status

Layer Configuration

Passed Diagnostic Tests
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Requirements

Reference:

IC Network FDIR Functional Requirements,

Section 5.2.3.3

Notes: None

Description:

For each port of the Node Under Test that is adjacent to an idle node, a series of fault

detecting diagnostic tests is performed. The tests are sequential in nature, and if any test

fails, the remaining tests in the sequence are not performed. The first test determines if the

link between two nodes can be activated. The second test determines whether or not the

adjacent node transmits on a port that has been disabled. The third test determines whether

or not the Node Under Test retransmits a message on a disabled port. If this suite of tests

is completed without any errors, the last test is performed. This final test determines if the

Node Under Test responds to the address of another node in the layer.

The first test is performed by using a reconfiguration chain to establish a link between the

Node Under Test and an adjacent node. If the attempt to enable the link is successful, the

link is left in the enabled state so that the next test can be executed.

In the second test, a configuration command is sent to the adjacent node, utilizing the link

enabled during the first test, instructing it to disable all its ports. The node protocol is such

that it will carry out this command before transmitting a reply. A properly functioning node

transmits a reply from all enabled ports to every command it receives. Since no ports are

enabled, this message should not be transmitted. Thus, the node passes this test if a reply

to the command is not received. If the node sends a reply, it is considered failed and its

status is marked accordingly. Prior to starting the third test, the adjacent node has all its

ports disabled.

In the third test, a chain of three transactions is transmitted on the layer. The first

transaction is sent to the Node Under Test commanding it to disable all of its ports except

its inboard port which connects it to the established layer. The second transaction is sent to

the adjacent node commanding it to enable the port facing the Node Under Test for one

transmission only. The third transaction is sent to the Node Under Test asking for its

status. If the Node Under Test is functioning properly, it will not retransmit any messages,

including the command making up the second transaction, to the adjacent node. On the

other hand, if it is has failed such that it does retransmit a message on a disabled port, the

adjacent node will send a reply which may or may not be transmitted back to the ICIS. In

either case, the transmission of this reply will cause the the Node Under Test's valid

message detector for the port facing the adjacent node to record the transmission and this

information is returned as part of its status message. The Node Under Test passes this

third test if the status indicator for the port in question shows no activity and a valid
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messagewasnot received. If the NodeUnderTest fails, its statusandthe statusof its
portsaremarkedfailed.

When the abovethree testshavebeenperformedfor every port of the nodeunder test
adjacentto an idle node,thenodeundertestis configuredsothat only its inboardport is
enabled.It is thenreadyfor the lasttest.

In thelastdiagnostictest,eachnodein thelayeriscommandedto reportits status,whether
or not it is in the activetree. If anunconnectednode(i.e. onewhich is noton either the
spawningqueueor the active node list) respondsto this command,the most recently
connectednodeis answeringto thisaddress.This newlyaddednodeis thendisconnected
from theactivetreeby disablingits inboardport. Furthermore,its statusin NodeStatusis
markedfailed, sincetheaddressdecodingfunction of a nodeis faulty. It is alsopossible
that apreviously connectednodecould respondwith errors. This meansthat eitherthis
nodehasfailedor themostrecentlyaddednodeis talkingoutof turn. This lastaddednode
is thenremovedfrom thelayerasdescribedabove.Thenodeor nodeswhichhaderrorson
theprevioustest axe again queried for status. If the error indicators axe gone, it confirms

the talker out of turn hypothesis, and the status of the removed node is set to failed. If not,

it indicates that a failure has occurred during the growth process. In the former case, the

growth process is continued. In the latter case, the growth process must begin again from

the start.

5.4.6

Process Name: Adding Remote FTPs

Inputs: Layer Identifier

Layer Topology

FTP Subscriber List

Layer Status

Layer Configuration

Outputs: Layer Status

Layer Configuration

Requirements

Reference:

IC Network FDIR Functional Requirements,

Section 5.2.3.3

Notes: None

Description:

The ports adjacent to the FTP subscribers axe enabled one at a time. Since an FTP which is

facing a disabled port will not detect any layer activity, it may be attempting to use the layer
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at thetimetheport is enabled.Thiscouldresultin errorsbeingdetectedin thenode'sreply
to its configurationcommand.Therefore,errorsin thenodestatus,which is returnedafter
enablingtheroot nodeport of aFTP,areignored.To verify thattheFTPis not babbling,
however,themanagermustaskfor a statusreadof thatnode. If theFTPis babbling,that
port is returnedto adisconnectedconfiguration. This phaseof layergrowth is complete
when all the ports on the subscriberlist have beenenabledand verified for proper
functioning. The NodeConfigurationandNodeStatusdatabasesareupdatedafter each
reconfigurationtransactionisexecutedandconfirmed.

5.4.7

Process Name: Layer Maintenance

Inputs: Layer Identifier

Layer Topology

Layer Status

Layer Configuration

Error Report

Outputs: Layer Status

Layer Configuration

Requirements

Reference:
IC Network FDIR Functional Requirements,

Sections 5.2.3

Notes: None

Description:

The various services provided by this process are invoked by the IC Layer Manager. The

services provided are: status collection from the nodes in the layer, fault analysis, and layer

reconfiguration. If errors are detected during the IC Communications, the IC Network

Manager takes that layer out of service and allows the Layer Manager to have sole access to

the layer until it has restored full service to all non-failed layer nodes and subscribers.

5.4.7.1

Process Name: Layer Status Collection

Inputs: Layer Identifier

Layer Topology

Outputs: Status Collection Report

Requirements IC Network FDIR Functional Requirements,
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Reference: Section 5.2.3

Notes: None.

Description:

The Layer Status Collection process is the fault detection mechanism of the Layer Manager.

When this subprogram is called, it is assumed that the Layer Manager is in control of the

interface to the layer, i.e. that the IC Network Manager has taken the layer out of service.

In addition to collecting status from each non-failed node in the layer, this subprogram

performs some preliminary analysis of error information. This information is obtained by

the ICIS when it executes the status collection chain.

The Status Collection Report provides the Layer Manager with a summary of the error

information obtained from a preliminary analysis of the response data from the status

collection chain. When the ICIS transmits messages on the layer to a node, it observes

aspects of the communication and records those observations in registers and buffers for

later processing. This constitutes a fin'st stage of fault detection, and it includes detection

of: the failure of a node to respond to a command in a reasonable length of time, the

presence of transmission errors on the layer, an incorrect number of bytes in a response,

and other violations of the communication protocol. In addition to detecting errors on

transactions to individual nodes, the overall performance of the layer is monitored for

failures which impede the proper functioning of the contention sequence. These failures

include a babbler which is flooding the bus with meaningless signals and a data line which

is holding the layer in a "stuck on one" condition.

The Status Collection Report presents a summary of the information provided by the ICIS

with conclusions drawn about the following error conditions: an interface failure, a

babbler, and individual errors detected for each node. If the summary reports that an

interface failure has occurred, it also states whether the cause is a failed ICIS or a failed

channel connected to the active ICIS. If the summary reports that a babbler is present on

the layer, it also specifies whether the babbler was detected during contention for the layer

or during data transmission. When either of these errors axe present, no further data is

provided since the integrity of this data is in question. Furthermore, the Layer Manager's

strategies for reconfiguring the layer to eliminate these problems do not require information

about individual nodes. Finally, if neither an interface failure or a babbler is detected, an

error indicator is provided for each active node in the layer. This error indicator simply

notes that an error has occurred. The error could be due to a variety of causes, including a

no response error, an HDLC protocol violation, or a check sum error. The type of error is

logged in the IC Layer Error Log, however, it is not passed back to the Layer Manager,

since its logic does not require this level of granularity to correctly reconfigure the layer.
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5.4.7.2

Process Name: Layer Fault Analysis

Inputs: Layer Identifier

Layer Topology

Layer Configuration

Status Collection Report

Outputs:

Requirements

Reference:

Error Analysis Report

IC Network FDIR Functional Requirements,

Section 5.2.3.1

Notes: None.

Description:

The purpose of this process is to analyze the data provided by the Status Collection Report

in order to identify both the type of fault responsible for the errors and, if possible, the

layer element itself. Two types of analysis are performed: data analysis and error analysis.
Each is described in this section.

The data is screened for errors first by the data analysis procedure and then by the error

analysis procedure. In some cases, the analysis of the fault is not completed by these

procedures, and additional information is necessary before a final conclusion can be drawn.

In such cases, the analysis is continued by the Layer Reconfiguration function. This

process is discussed in detail in Section 5.4.7.3. That section also describes the actions

taken by the Layer Reconfiguration algorithm in response to the various conclusions

arrived at in the layer fault analysis process that is discussed here.

Data analysis is the process whereby the status information returned by the nodes is

reviewed for the purpose of extracting information about faults in the layer. This process

examines the information in the Status Collection Report to determine if a node is

transmitting on a port that should be disabled. The transmission may be simple, random

noise or a valid message retransmitted by a disabled port due to some fault in the node

hardware. This is detected when a node records any activity on the layer (i.e., a change in

voltage from low to high or vice versa) or the reception of a valid transmission by a non-

failed port which the Layer Configuration shows to be disabled or idle. (Adjacent ports are

always in the same configuration, either both enabled or both disabled. They also have the

same status, either both active, both idle or both failed.) Initially, this algorithm decides if

a babbler is present, because a babbler causes the network nodes to return invalid data. If

such a fault is not detected, then this process analyzes the data from the error-free node

responses, determines the nodes that have received port activity, and examines the origin of
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thesemessages.If a non-failed,disabledport reportsthereceptionof a message,thenode
adjacentto thatport is transmittingonadisabledport. If anodeis locatedwith suchafault
signature,thenthefault is attributedto thenodetransmittingon thedisabledport andthe
error report indicatesthis fact alongwith the ID of thefaulty node. In contrast,if more
thanone nodeis found to havethis fault, a report indicatinganunsuccessfulanalysisis
returnedby thisprocedure.Finally, if suchafault is notpresentin the layer,thereportthat
is returnedby theanalysisindicatesnodataerrorswerefound.

Error Analysis is thesecondprocedurein layer fault analysis. As its nameimplies,error
analysisis theprocessof deducingwhich layerelementproducedthesetof errorsrecorded
in the StatusCollectionReport. Of coursenot all setsof errorsareamenableto analysis.
The input spaceof this subprogramhasmany combinationswhich do not pinpoint a
specificlayercomponentasbeingfaulty. In thesecases,thesubprogramretumsavalueof
undiagnosableerrors. Furthermore,theassumptionunderlyingall thedeductivereasoning
in theerroranalysisis thatonly onecomponenthasfailed,andthis failure givesrise to all
theerror symptoms.

If the StatusCollection Reportindicatesthat an interfacefailure hasoccurred,the error
analysisreport attributesthe errors to a root link failure, indicatingthe root link which
failed andthecauseof thefailure, eitherfailed ICIS or failed FTPchannel. In a similar
manner,if ababbleris reported,theerroranalysisreportattributestheerrorsto ababbler.
If neitherof theseerrorsis present,theanalysisproceedswith anexaminationof theerrors
attributedto non-failednodesin thelayer.

If all thenodesin the layer haveerrors,the erroranalysisreportattributestheerrorsto a
root link failure,indicatingthecauseasafailedICIS. If somenodeshaveerrorsandsome
donot,two possiblefailuremodesareconsidered:(1)afailed link (ornode)throughwhich
no transmissiontakesplaceor (2) a singlenodefailure. The singlenodefailure symptom
couldbeindicativeof anodewhichdoesnotrespondto commandsbutwhichcontinuesto
retransmitmessagesasit did beforethefailure. It couldalsobea nodewhich itself is not
failed but to whoseaddressanothernodein the layerresponds.The singlenodefailure is
easyto diagnosesinceexactlyone nodein the StatusCollectionReportshowsanerror.
Thereconfigurationstrategyusedin thiscaseis describedin Section5.4.7.3.

If two or morebut fewer thanall nodeshaveerrors,theremainingproblemis to determine
if thecauseof thoseerrorsis a link or nodewhosetransmission/retransmissionfunctionis
no longeroperational.The basicideais thatwhena link or a nodefails in thisway, then
all nodesdownlineof this fault alsohaveerrors. The signatureof sucha failure is these
nodesform a treelike patternin the layer. It shouldbenotedthat anotherfailure mode
which wouldproduceasimilarpatternof errorsis anodewhichbabblesonall its outboard
ports. To determineif the observederrorsfit this caseis a threestepprocess.Thefirst
stepis to identify a nodewhich qualifies astheroot of thefailed tree. Suchanodeis a
node which had errors itself but which hasan inboard port (the port which receives
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commandssentby theICIS)adjacentto anon-failednode. To verify this fault hypothesis,
exactlyonesuchnodeshouldhavethischaracteristic.If morethanonesuchnodeexists,
thefault is consideredundiagnosable.However,if a root is found, the secondstepis to
determinewhetheror not all nodesdownlineof theroot haveerrorsattributedto them.
This is accomplishedby a recursivesubprogram.The subprogramacceptsa nodeasa
parameter;the nodeis referredto asthecurrentnode. The first call to the subprogram
usestherootof thefailedtreeastheinput parameter.Thesubprogramexaminesthenodes
adjacentto theoutboardportsof thecurrentnode. If anyof thesenodesdoesnot have
errorsattributedto it, the subprogramreturnsavalueof falseandthe fault is considered
undiagnosable.However,if a treelikepatternis established,thethird stepof thepattern
checkingprocesscanproceed.This stepverifiesthatall nodeswhich haderrorsappeared
in the failed tree,i.e. no nodeswith errorslie outsidethetree. If nodeswith errorsare
found outside the tree, the fault is consideredundiagnosable. If all three stepsin the
processsupportthefailed link/failed nodehypothesis,anerroranalysisreport is returned
statingthe fault is afailed link or a failed node. Additional informationcontainedin the
reportis: thenodenumberof thefailedrootof thetree,theport numberof theinboardport
of this node,anda list of nodesin thetree. Thefinal determinationof whetheror not the
fault is dueto afailed link or a failednodeismadeduringlayerreconfiguration.

5.4.7.3

Process Name: Layer Reconfiguration

Inputs: Layer Identifier

Layer Topology

Layer Configuration

Layer Status

Error Analysis Report

Outputs: Layer Status

Layer Configuration

Requirements

Reference:

IC Network FDIR Functional Requirements,

Section 5.2.3.2

Notes: None.

Description:

The purpose of this process is to reconfigure the layer so as to restore error free

communication to all reachable, non-failed nodes in the layer. The action taken by this

process will depend upon the type of failure reported in the Error Analysis Report. The

fault identified in this report is actually a speculation about what is causing the errors on the

layer. This process in effect tests this hypothesis and then verifies that the layer is again
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fully operational.Thusthelayermaygo throughseveralintermediateconfigurationsbefore
thereconfigurationprocessis complete.

Therearefive classesof faults identified by theLayerFaultAnalysisprocessdescribedin
Section5.4.7.2. They area babbler,a link or nodefailure, anodewhich transmitson a
disabledport, a single nodefailure, andan undiagnosablefailure. The Error Analysis
Reportindicateswhich oneof thesefailure modesis presentlycausingdisruptionson the
layer. Dependingon the type of fault, it mayalso containsomeadditional information
aboutthethesourceof theproblem. A separatestrategyexiststo dealwith eachof these
fault classes. .

Thereconfigurationprocessis consideredcompletewhenthenodestatuschainis executed
on thereconfiguredlayer anddoesnotdetectanyerrors.Further,thebackupstratagemfor
dealingwith errorphenomenawhichoccurduringareconfigurationattemptbut whichare
not anticipatedis layerregrowth.

The reconfigurationstrategiesaredesignedto dealwith both activeand passivefaults.
Passivefaults are characterizedby the non-retransmissionof data,sort of a barrier or
obstacleto dataflow in thelayer. A disconnectedcableis anexampleof suchafault; data
cannotberetransmittedover thiscablebut transmissionbetweenotherconnectionsin the
layer is not affected. Active faultsarecharacterizedby thedisruptionof dataflow in the
layer beyondthe boundariesof the failed componentitself. An ICIS with a transmitter
stuckon high is anexampleof this typeof fault; the stuckon condition is retransmitted
throughout the layer, possiblydisrupting transmissionsbetweenall layer connections.
Sincethesameerrorconditionsgeneratedby abrokenroot link couldalsobegeneratedby
anICIS stuckonhigh,thereconfigurationalgorithmmustidentify thespecificcauseof the
problemsoasto effectarepair.

Whenababbleris detectedin the layer,thelayeris regrownwithout thediagnosticoption
sincethedetectionandisolationof ababblerdoesnotrequireanydiagnostictesting.

A subprogramcalledRepairLink or NodeFailureis calledto handlelayerreconfiguration
whenthe Error Analysis Reportindicatesthepresenceof a failed link or node. Sincea
failed node generatesthe sameerror pattern as a failed link, this subprogrammust
determinewhich fault hasactuallyoccurredandreconfigurethelayer accordingly. The
Error Analysis Report containsthe nodenumberof the nodesuspectedto be failed, its
inboardport, andalist of nodeswhichareunreachableasaresultof this failure. It is first
assumedthata link hasfailed. The failed link is disconnected,andanattemptto reachthe
failed node,i.e. thenodeimmediatelydownlinefrom thelink, is madeby usinganyspare
portson thatnodewhichareadjacentto non-failednodes.Thechainusedtoreconnectthis
nodeto therestof the layer containsthreetransactions.Thefirst twotransactionsenable
the portsoneither sideof thenewinboardlink; thethird transactiondisablestheformer
inboardport of this nodein casethenodeadjacentto thatinboardport is ababbler. If this
strategyfails to restorecommunicationwith the failed node(possiblybecauseno spare
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portsareavailable),datais assembledwhichwill alloweachbranchof thefailed treeto be
reconnectedto the active layer. This dataconsistsof a list of nodesfor eachbranch
stemmingfrom thefailed node(i.e.a separatelist for eachsetof nodeswhich lie downline
of eachof its outboardports). Only onesuccessfulconnectionto any spareport on a
branchis necessarytorestorecommunicationto theentirebranch(andpossiblyto thefailed
nodeandall othernodesin the failed tree). Again a threetransactionchain is used,this
timefor adifferentpurpose.Thef'trsttwotransactionsenabletheportsoneithersideof the
new link while thethird transactionattemptsto obtainstatusfrom thefailed node. If the
failed nodecorrectly returnsits status,therepair is completeandtheabsenceof errorsis
verified by collecting statusfrom everynodein the layer. If thefailed nodeis still not
reachable,the port connectingthis nodeto the presentbranchis disconnectedand the
properfunctioningof thenewlyenabledlink isverified. Thenall nodeson this branchare
removed from the failed node set. The net effect of this process is to restore
communicationwith all reachablenodesin the layer while isolating thefailed node. As
communicationto eachbranchis restored,thepossiblepoolof sparelinks increases.Thus
if any branchwasnot connectedbecauseof a lack of sparelinks, this branchis retried
whenevera connection to anotherbranch is successful. Any nodeswhich are still
unreachableat theendof thisexhaustiveprocessareassigneda statusof failed.

If a noderetransmitsvalid dataon a port which shouldbedisabled,the nodemust be
removedfrom thelayer. Thisfailuremodeis distinguishedfrom a babblerwhich is always
transmittingarandombit streamor is stuckonone. Whenababblingport is identified,the
adjacentport of the neighboring node is disabled. This neighboring node will not
retransmiton its otherenabledportsanythingreceivedby thedisabledport. Furthermore,
thenodewill ignoreanyrandombit patternsit receives.However,if theneighboringnode
receivesa requestfor its statuson a disabledport (asmight occur if a failed node is
transmittingonadisabledport), it will transmitits statusonall of its enabledports, ff this
failed nodeis not removed,eachtime the Layer Managerasksfor statusfrom thenode
adjacentto this port, it would receivetwo valid commandsto reportits status,which will
result in two statusresponses.However,only oneresponseis expected. Oncethefirst
responseis receivedby theLayerManager,anothernodewill becommandedto reportits
status. The secondresponseof the nodemay interfere with the reply of a nodewhose
transactionis later in thechain,making it appearthatthis nextnodehasfailed to respond
correctly to acommand. Oncethefailednodehasbeenremovedfrom thelayer,statusis
collected from theremainingnodesto verify that in fact thefault hasbeenidentified and
isolated. If errorsare still detectedin the layer, a full regrowth,with a completesetof
diagnostictests,is performed.

The subprogramwhich removesa nodefrom thelayeris calledRemoveFailedNodeand
Reconnectto Trees. As thenameimplies,removalof a nodeis asimplematterif thenode
is a leaf; only the link connectingit to the layer needsto be disconnected. This is
accomplishedwith onechain. However,if thenodeis therootof a subtreein thelayer,the
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nodesdownline from thefailed nodeneedto bereconnectedto thelayerthroughalternate
links.

Prior to beginningthereconfigurationof the layer, the nodes downline of each outboard

port of the failed node (i.e. the nodes on each branch of the tree emanating from the failed

node) are added to a reconnection queue. Each of these nodes is also added to a set of

unreachable nodes. The link connecting the inboard port of the failed node to the rest of the

layer is then disabled. Next, a loop is entered in which an attempt is made to reestablish a

connection to each isolated branch via a spare link from a node which is still reachable, i.e.

is not a member of the unreachable node set. Only one such connection needs to be made

to restore communication to all the nodes in the branch. After the new connection is

enabled, the link connecting the failed node to this branch is disconnected. As each branch

is reconnected, the nodes in that branch are removed from the failed node set. If any

branch is successfully reconnected, the branches which were not connected during earlier

attempts are tried again since more spare links become available. Thus this algorithm,

while isolating the failed node, restores communication to every reachable node in the

layer. Nodes which cannot be reached because earlier failures are marked failed.

If a single node in the layer has errors, the reconfiguration is handled by a subprogram

called Reconnect, Remove, or Regrow. This failure can occur: (1) if the failed node is a

leaf node, (2) if its retransmission function still works correctly but its status reporting

capability is impaired, or (3) if another node is responding to this node's address making it

al_pear that this node is failed. The failed node is isolated from the layer, as described

above in the discussion of Remove Node and Reconnect to Trees. However, care is taken

not to address this node directly. When the node is isolated, this node is again queried for

its status. If a valid response is received, indicating the presence of a node which responds

to the addresses of other nodes, the layer is regrown with a full set of diagnostic tests to

isolate this faulty node. Otherwise, an attempt is made to find an alternate root to this node

using any port except its previously failed inboard port. The configuration command sent

to this node as part of the link enabling procedure will disable this failed inboard port.

If the attempts to reconfigure the layer have not succeeded in eliminating errors, then a layer

regrowth is performed. This is the back up reconfiguration strategy, used when all else

fails.

Following the reconfiguration of a layer, the Layer Status is updated to reflect the current

state of the layer hardware. If any nodes have been isolated from the layer as a result of the

reconfiguration, the transaction for that node is removed from the status collection chain.

Additionally, the Layer State is given the value Repaired.
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6.0 THE PHYSICAL AND DATA LINK LAYERS

The Physical Layer of the ISO Model is concerned with the electrical, functional, and

procedural characteristics necessary to establish, maintain, and disconnect a physical

circuit. The Data Link Layer is concerned with the low-level requirements (i.e.,

communication protocol, fault detection, and fault recovery) necessary to send valid blocks

of data over a physical link [4]. In this section, the Physical and Data Link Layers of the

AIPS Distributed Engineering Model are described.

6.1 Functional Requirements

A communications interface is required to permit a physical link between two or more FTPs

in the distributed AIPS system. This interface provides a communication protocol to allow

data to be reliably transmitted between a set of subscribing network sites. Furthermore,

this physical and data link interface is designed to be a modular redundant architecture in

order to enable fault tolerance and to facilitate reconfiguration. The hardware

implementation also provides the necessary status information permitting fault detection and

isolation operations on the communication process.

6.2 Hardware Specifications

A hardware interface was developed specifically for the AIPS project to provide the

required Physical and Data Link layer functions. This interface between the FTP and the

Inter-Computer network is referred to as the Inter-Computer Interface Sequencer (ICIS).

The ICIS is responsible for managing the low-level bus protocol and data formatting details

in an autonomous manner, thus relieving the processors of the FTP of the task of managing

the IC network at microsecond time frames. Each channel of an FTP has one ICIS which

is accessible to both processors of the channel. The physical connection between the

ICISes of two separate FTPs is the Inter-Computer Network as illustrated in Figure 5-1.

As described in Section 5.0, the Inter-Computer Network is comprised of three layers. As

shown in Figure 5-1, each channel's ICIS has an individual interface to each of the three

layers. When the IC Communication Services on a triplex FTP transmits a message, three

copies are transmitted (at essentially the same time); one copy on each IC layer. The ICIS

in any one channel of an FTP listens to all three network layers but can only transmit on

one. The transmission function of the ICIS is responsible for serializing data, resolving

network contention, and transmitting data on the network. In the other direction, this

network interface listens to three bit streams, deskews them, and stores all redundant data

streams, along with certain status information, in a dual-ported memory accessible by the

channel's processors.

The ICIS hardware specifications are presented in the following sub-sections. First, a

description of the Physical and Data Link implementations is given. These implementations

are completely independent of the redundancy aspects of this communications interface.
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Second,the method of arbitrating for network possessionis described. Finally, the
interfacebetweentheICISandthecoreFTPisdiscussed.

6.2.1 Physical and Data Link Layers

The IC network Physical Layer uses 2 Mbit/Second NRZI (Non Return to Zero Inverted)

bit serial protocol. In this protocol, a logical '0' is represented by a transition, either from a

high to a low or from a low to a high, and a logical '1' is represented by a lack of a

transition. A constant high level or a constant low level represents a string of 'l's on the

network. -

The Data Link Layer protocol used in the Distributed AIPS Engineering Model hardware is

a 2 MHz HDLC protocol. In this protocol, no more than five 'l's can be transmitted in a

row. A '0' is inserted after five 'l's by the HDLC transmitter chip, and it is subsequently

deleted at the receiving end by its counterpart. Six 'l's in a row constitute an HDLC flag

which is used to mark the beginning and the end of an HDLC frame. Seven 'l's constitute

an HDLC abort signal and more than 7 'l's represent an HDLC idle state. The last two

HDLC signals are not used in the AIPS Model. At 2 MHz, each bit width is 0.5 ).tsec,

which makes the maximum time the network would stay high or low while transmitting

HDLC data 3 I.tsec.

The HDLC protocol provides automatic address detection, embedded control information,

and cyclic redundancy checking to detect transmission errors. An HDLC frame contains an

opening flag, address byte, control byte, data bytes (in AIPS up to 119), two FCS (Frame

Check) bytes, and a closing flag. The opening and closing flags are identical and consist of

a '0', followed by six 'l's and a '0'. It is not possible for a flag to look like data since the

HDLC protocol specifies that within the data field after five continuous 'l's a '0' is added.

Additionally, the HDLC address detection mechanism can be configured to allow the

receiving sites to accept only those data packets which are addressed to the FTP or which

are "broadcast" messages (data which is sent to all subscribers on the network).

6.2.2 Inter.Computer Network Contention

This section describes the design and implementation of the bus contention protocol that is

used to arbitrate access to the inter-computer network. The issue of reliably resolving bus

contention is critical in a mixed redundancy distributed system such as AIPS.

The inter-computer circuit switched nodal network is triplicated in the AIPS Distributed

Engineering Model. The three layers of the network are used to provide redundancy rather

than maximize bandwidth. In normal operation, the three layers carry identical

information. By making redundancy management and network contention transparent to

application software, a very simple and friendly virtual architecture, that of a highly reliable
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simplexbus, is presentedto the applicationsprogrammer. In fact, most aspectsof the
networkcontentionarehiddenfrom thesystemsoftwareaswell.

For accessarbitrationpurposes,the triplex networkis treatedasa singleentity. FTPs,
regardlessof theirredundancylevel,competefor all threelayersof thenetwork.At theend
of thecontentionsequenceone,andonly one,FTPmayhaveaccessto all threelayersof
thenetwork. Thus,if a duplexFTPwins contention,it is givenexclusiveuseof all three
networklayerseventhoughit cantransmitononly two of thethreelayers. No effort is
madeto maximizethe networkbandwidthby providing simultaneousaccessto a duplex
FTPontwo layersanda simplexFFP on the third layer, for example.

The bus arbitration scheme must meet certain requirements for the type of applications for

which the AIPS architecture is intended. Communication between critical functions which

are resident in triplex FTPs must not be interrupted or corrupted by lower criticality

functions resident in duplex and simplex FTPs. Triplex FTPs should be given access

priority over all others. Similarly, duplex FTPs should have priority over simplex FTPs.

In a distributed system such as AIPS, the contention resolution must be fair and equitable

to all sites of like redundancy. Over a period of time, for example, all triplex FTPs should

have an equal chance of getting network access. Similarly, all duplexes should be served

equally well by the network as should all simplexes. However, the arbitration scheme

should also be flexible enough so that a low criticality function that may be assigned to run

on a triplex FTP should not hog the network. A triplex FTP should contend as a duplex or

simplex, if the function requesting the communication is of appropriate low priority.

No single point failure should result in a communication disruption between two triplex

computers. The arbitration logic must be able to resolve bus contention in a reliably robust

manner even in the presence of an arbitrary fault. In other words, a malicious failure in a

simplex FTP or in one channel of a redundant FTP should not be able to disrupt traffic on

more than one layer. Furthermore, in keeping with the spirit of the distributed nature of

the AIPS architecture, the arbitration authority must not be centralized. It should be

distributed throughout the system, and all processing sites wishing to access the network at

any given time should arrive at a consensus about the sole winner cooperatively but

independently and in a fashion which preserves network integrity in the face of failures or

damage.

In addition, redundant channels within an FTP must come to a consensus as to whether or

not they are contending for the bus and at the end of the contention sequence, whether or

not they have won access to the bus. The bus contention protocol does not occur in the

FTP processors themselves but rather in the dedicated Inter-Computer Interface Sequencer.
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6.2.2.1 The Laning Poll

The IC bus arbitration protocol is an evolution of the Laning Poll, a protocol used

previously to resolve bus contention internally in the Fault Tolerant Multi-Processor

(FTMP).

The Laning Poll is a bit serial algorithm for prioritized contention of serial buses. The

Laning Poll assumes that multiple sites can transmit on the same bus or serial line

simultaneously, each site then receiving the 'OR' of all bus transmissions. That is, if any

site transmits a '1' all sites will hear a '1'. Each site contending.for the bus has its own

unique binary priority vector P(vl,v2 ..... vn). A higher number signifies a higher

priority. The Laning Poll algorithm guarantees that the site with the highest priority will

win the bus. The poll consists of sequentially transmitting each priority bit (from most

significant to least significant) on the bus. Each site behaves according to the following

algorithm during the polling period.

For all i while still contending do:

Transmit Pi on the serial bus
If Pi = 1 and Received value = 1 then continue
If Pi - 1 and Received value = 0 then win bus
If Pi = 0 and Received value = 1 then quit
If Pi = 0 and Received value = 0 then continue

This algorithm requires that all sites on the bus be synchronized in some manner prior to

the start of the poll so that all sites are transmitting their ith priority bit simultaneously.

There is no global clocking mechanism to synchronize all sites on the bus and, in fact, there

is no need to synchronize the processing sites except for the bus arbitration poll.

Therefore, the processing sites operate asynchronously until a site needs access to the bus.

A start bit precedes the polling sequence to ensure synchronization of the polling sequence

across all sites, as further explained in Section 6.2.2.2.1.

6.2.2.2 The AIPS Contention Protocol

The AIPS contention protocol uses a modified form of the Laning Poll. It consists of two

parts, the redundancy contention sequence and the priority contention sequence. The

redundancy code sequence consists of 3 bits: S, T, and D (denoting Start, Triplex and

Duplex, respectively), and the priority code sequence consists of three FTP priority bits

followed by six FTP ID bits. The objective of the redundancy contention sequence is to

resolve contention between the different levels of redundant elements contending for the

bus (i.e., triplex, duplex, simplex). At the end of this sequence, all non-failed FTPs still

contending should be of the same redundancy level. The priority contention sequence

resolves contention among non-failed FTPs of the same redundancy level according to the

priority and the ID bits.
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6.2.2.2.1 The S Bit of the Redundancy Code Sequence

The bus contention begins with the 'S' (Start) bit. A FTP may initiate a contention

sequence if the network has been idle for greater than 512 I.tsec. To initiate a contention

poll, a FTP transmits a '1' on all layers to which it is connected. Other FTPs may join in

the poll sequence by transmitting their own S bits while the initiating FrP is still sending its

S bit. All channels OR the S bits on all three network layers. The S bit serves to

synchronize all contending sites at the beginning of the poll sequence.

6.2.2.2.2 The T Bit of the Redundancy Code Sequence.

All triplex FTPs contending for the network transmit 'l's on all three network layers during

the 'T' (Triplex) bit. All FTPs contending for the network vote the T bit on the three

layers. If the voted result is a '1', indicating the presence of a triplex in the contention

sequence, all FTPs not configured as a triplex drop out of the contention sequence. All

contending FTPs configured as triplexes skip the next redundancy code sequence bit and

proceed directly to the priority contention sequence. If there is only one triplex in the

contention, it should obtain a voted result of '0' and declare itself the winner, and it does

not go through the rest of the contention sequence. A triplex not contending as a triplex for

low functional priority reasons does not transmit during this bit. If duplexes or simplexes

obtain a voted result of '0' during the T bit, they conclude that no triplexes are contending

and they go on to the D bit.

6.2.2.2.3 The D Bit of the Redundancy Code Sequence

The 'D' (Duplex) bit is used to resolve contention between duplex and simplex FTPs.

During the D bit poll, a FTP configured as a duplex transmits a '1' on the two layers to

which it is connected. All contending duplex and simplex channels OR the three network

layers. If the result is a '1', indicating the presence of one or more duplexes, all FTPs not

configured as duplexes drop out of contention. All FI'Ps configured as duplexes proceed

to the priority contention sequence. If there is only one duplex in the contention, it

obtains a voted result of '0' and declares itself the winner. Further, it does not go through

the rest of the contention sequence. If simplexes obtain a result of '0', they proceed to the

priority contention sequence.

6.2.2.2.4 The Priority Sequence Bits

The priority sequence consists of 3 priority bits and 6 FTP ID bits. The voted or ORed

result of each of these poll bits, as described below, is treated in the traditional Laning Poll

manner.

Triplex Contention - Each channel of triplex FrP votes the three network layers.

Duplex Contention- Each channel of duplex FI'P ORs the three network layers.

Simplex Contention - Each simplex FI"P channel ORs the three network layers.



6.2.2.3 Implementation of Network Contention Hardware

The ICIS is responsible for contending for the network, formatting data, transmitting data

from the channels onto the network, receiving data from the network, and storing data in its

memory in an appropriate format for use by the channel's processors. Multiplexing

between these tasks is the responsibility of the ICIS master microsequencer which obtains

its control inputs from the processors (through a control register) and a sequence of

microinstructions. Only those parts of the ICIS design that pertain directly to the

implementation of the contention scheme will be discussed here.

Central to the operation of the ICIS contention circuit is a network activity monitor. Each

ICIS in each FTP channel contains three identical monitor circuits, each dedicated to a

single network layer. The individual states of the three network layers, as determined by

the network activity monitors, are combined within each ICIS to determine the overall state

of the IC network. A microsequencer in the ICIS uses the network state in combination

with control inputs from the processors to determine its next action.

The three ICISes in the three channels of a triplex FTP operate in tight synchronism with

each other in order to assure identical operations in the three channels and on the three

network layers. However, due to the lack of a system-wide synchronization clock, the

initiation of a poll sequence by a FTP is totally asynchronous to all other FTPs in the

system. Therefore, it is necessary for the ICISes in an FTP to follow the source

congruency principles and make the network state congruent across the ICISes before

using that information to determine their next action. This is accomplished by exchanging

the internal ICIS states across the three channels using dedicated exchange hardware. The

design of this exchange hardware follows the principles that are outlined in the following

sections.

6.2.2.3.1 Poll Bit Timing

As stated earlier, the IC network Physical Layer uses the NRZI protocol. Further, the Data

Link Layer protocol used in the AIPS Distributed Engineering Model hardware is a 2 MHz

HDLC protocol. At 2 MHz, each bit width is 0.5 gsec, which makes the maximum time

the network would stay high or low while transmitting HDLC data 3 _tsec.

The Laning Poll contention scheme is superimposed on the HDLC protocol by making the

poll signals wider than 4 p.sec so that they are not interpreted as HDLC signals. Figure 6-1

shows the timing for the poll bits. Suppose that the site labeled 'A' initiates the contention

sequence by putting the start bit S on a network layer and is joined in the poll by a second

site labeled 'B' which is located the maximum number of nodes away from A. Figure 6-1

shows that the start bit width should be 48 gsec and that all subsequent poll bits should be

24 I.tsec wide.
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Figure 6-1. Poll Bit Timing

The additional 24 ktsec at the beginning of the start bit for the site initiating the contention is

used by the receiving sites to identify the poll bit, compensate for skew between network

layers, and allow the ICISes time to exchange the poll detection event. A poll detect time of

4 _tsec is used to distinguish it from the longest HDLC string of 'l's. The network layer

deskew time of 12 p.sec is required since, in the worst case, the poll bit may have passed

through a maximum number of nodes in one layer and a minimum number of nodes in

another layer. Because passing through each node produces a delay of about a third of a

microsecond in the Engineering Model nodes, a deskew time of 12 I.tsec would allow more

than 32 nodes in each IC network layer. At this point each ICIS determines, by an

examination of the network layer activity monitor outputs, if a contention has begun. This

information is then exchanged across redundant ICISes and made congruent. This takes

two cycles of the fault-tolerant clock or 8 ktsec.

6.2.2.3.2 Network Activity Monitors

The function of a network activity monitor circuit is to determine the state of the network

layer it is monitoring. Each channel's ICIS has three network monitor circuits. A network

layer can be in one of four different states depending on how long it has been High or

Low, as def'med in the following:

Data:

Idle:

Stuck:

Poll:

it is carrying HDLC data including flags (it is High or Low for less than 4

_tsec).

it has been quiet (Low) for 512 ktsec or more.

it has been High for 512 I.tsec or more.

it has been High for 4 _tsec or more but less than 512 I.tsec.
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Figure6-2showsthestatetransitiondiagramfor thenetworkactivity monitorcircuit. The
monitor circuit hasa total of eight states,four of which corresponddirectly to the four
networkstates.In addition,therearefour otherstateswhicharenecessaryfor themonitor
to handleindeterminatesituationsandtime skewsin thenetworklayers. Theselatter four
statesareasfollows:

Wait:
Poll Deskew:
PollDetect:

Released:

networkstateis unknown.
networktransitionedintohighstatebetween4 and 16t.tsecsago.
networktransitionedintohighstate16I.tsecsago. Specifiesthepoint at
whichtheICIScouldjoin apoll if soinstructed,
ahigh-to-lowtransitiondetectedwhile themonitorwasin thefirst part
of apolling sequence.

Thenetworkactivity monitorcircuit is drivenby theHDLC clock ticks which occurevery
0.5 I.tsec. It times the intervals betweentransitionson the network and provides an
indicationof themostrecentactivity on thenetworklayer. In Figure6-2, 'CT' represents
thevalueof theclock tick counter. The 'H' and'L' thatappearon statetransitionsrefer to
thenetworklayer statesHigh andLow, respectively,and'T' is usedto indicateatransition
of thenetworklayer from aHigh to a Low or viceversa.The asterisks(*) in thediagram
representthe logical 'AND' of two events.ThecounterCT is resetto zerowheneveranT
occurs,androlls over to zeroafteracountof 1023.

The statesWait andPoll Deskewarenecessaryto allow for timing skewson thenetwork
layers and areused to determinewhen a transition to Idle or Poll is about to occur.
Additionally, the Releasestateis usedto identify the network releasefunction. This
happenswhentheFTPthatis controllingthenetworkfinishestransmittingdataandwishes
to releasethe network for useby other FTPs. The controlling FTP re!inquishesthe
networkby initiating apoll andthendroppingoutof thepoll after 16_tsecs.Thisprocess
initiatesapolling sequenceamonganysiteswaiting to contendfor thenetwork. If onesite
is waiting to contend,it will win thepoll at thefirst bit. If two or moresitesarewaiting,
thepoll proceedsnormally. If nositesarewaiting to contend,themonitorcircuit indicates
an idle. The network releasefunction hasbeenincludedto allow a FTP to give up the
networkwithouttherequirementthat512I.tsecelapsebeforeanotherFTPcangaincontrol.

Threedifferentcircuitsin eachICIScombinethestatesof theindividualnetworklayers(as
determinedby the threemonitor circuits) to prcrducea consistentview of the network
status.Thethreenetworkstatesof interestto thecontentionlogic are:Data,Poll, andIdle.
In addition,certainabnormalconditionscanresultin anAbort signal. Thesesignalsare
provided asinputs to the ICIS microsequenceror the ICIS statemachine. Figure 6-3
providesaoverviewof thelogic blocksinvolvedin thepollingmechanism.
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Figure 6-2. Network Monitor State Diagram
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Figure 6-3. Polling Logic Blocks

The Abort/Data Detect circuit produces the Abort signal which is used to terminate a

contention. For simplex or duplex sites, data on any layer constitutes an abort. For triplex

sites, data received on two layers separated by less than 12 _tsec is required for an abort.

The Data Detect signal is presented to the circuit which identifies an idle network. This

signal, like the triplex FTP abort, requires two layers to indicate data with less than 12 _tsec

of separation.

The Poll Detect circuit produces a pulse if any network monitor enters the Poll Detect state

for the first time and any of the other monitors is in either the Poll Detect, Poll Deskew,

Idle, or Released states. This means that 12 p.sec after a poll is detected at least one other

layer must be either polling or be idle. A majority of layers polling or a single layer polling

with the other two layers idle are poll conditions.

6-10



TheIdle Detectcircuit is a set-resetlatchwhichpresentstheIdleDetectsignalto theICIS
statemachine.The latch is set to indicate the network is availablewhenevera layer
transitionsto theIdlestateandatleastoneotherlayerisateitherIdleor Released.TheIdle
Detectindicationremainsuntil eitheraPollDetectorDataDetectsignaloccurs,asdescribed
above.

ThethreecircuitsAbort/Data,Poll Detect,andIdle Detectaresynchronouswith thefault-
tolerantclock, andthereforetheyaresynchronizedwith the ICIS statemachineanddata
exchangeaswell.

6.2.2.3.3 ICIS State Machine

Figure 6-4 shows the state transition diagram for the ICIS state machine. Its function is to

conduct the poll and produce the signals 'Win' or 'Lose' depending on the outcome of the

poll. The ICIS state machine gets network state information from the three network activity

monitors in the form of the four signals described previously. Additionally, it gets control

inputs from the CP or the IOP. The control inputs, in the form of bits in a control register,

that are relevant to the contention function of the ICIS are as follows:

Get

Cstop -

Stop

Start

When set, the ICIS is instructed to contend for the network until network

possession is achieved and to retain possession until the bit is cleared.
When set, the ICIS is instructed to return to the not-contending state unless a
poll sequence is in progress or the ICIS is in possession of the network.
This bit has precedence over Get.
When set, the ICIS is instructed to return to the not-contending state and to
stop the ICIS microsequencer. This bit has precedence over Cstop, Get, and
Start.

When a 1 is written to this bit of the control register, the ICIS is instructed to
start a contention sequence unless a contention is already in progress. This
bit has precedence over Get and Cstop.

The normal control input to get access to the network is Get. Cstop, or conditional stop, is

used to implement 'polite preemption'. This allows the processor to request the ICIS to

preempt a poll unless one has already begun. The Stop control forces the ICIS to cease all

of its activities. The Start control is used by the processor to force a poll regardless of the

network state. This is useful when a babbling failure of a FTP may deny network access to

other FTPs. Finally, the signal 'Initialize' in Figure 6-4 represents a manual or power-up

reset of the ICIS state machine.

The horizontal levels on which the states are shown in Figure 6-4 represent general

groupings. The first level is the states for which the ICIS has not been instructed to

contend for the network. The next level represents those states for which the ICIS is

waiting for conditions to allow a poll. The third level contains states for which the poll is

in progress, and the fourth contains those states for which the poll was won. Only in the

state 'network possession' is the ICIS assumed to have control of the IC network.
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Figure 6-4. ICIS State Machine

The state machine which performs the poll is active during the states labeled 'start poll

sequence' and 'join poll sequence'. This state machine continues to poll until the poll is

either won or lost. If the polling machine exhausts all bits of the priority and ID without

reaching a decision, the poll continues with zeroes sent to the driver so that the ICIS will

appear to all other sites as to have dropped out of contention. The poll may be stopped

before a decision if an Abort is detected on the network or if the ICIS state machine

transitions to another state as a result of a control register signal.

The state vector of the ICIS state machine shown in Figure 6-4 is available for the IOP or

the CP to read as a memory mapped register. The processor may then monitor the process

of contention and decide to intervene if necessary. The 'bus busy' state can be detected by

the processor as a failure of the ICIS to transition from the state 'waiting to begin poll'. If

a poll has been aborted, the ICIS records this condition in a register separate from the state

vector so that the indication is not be lost at the start of the next poll. The processor is

responsible for clearing this bit.

The network release pulse described above is generated by the ICIS as a result of a

transition from the state 'network possession' due to the signal GET being set to zero. The

other transitions from this state are not the result of normal operation and do not produce

the pulse. Should a very long message be transmitted such that a single network

possession is insufficient, the ICIS will be instructed by the processor to end data
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transmissionandstartapoll. Undera conditionwheredatais followed by apoll, theICIS
mustinsert 12I.tsecof zeroson thenetworkbeforedriving it with thefirst poll bit. This
insertionof zerosis included so that, at all receiving sites,the skewbetweennetwork
layerscannotcausethefirst poll bit to bereceivedononelayerwhiledatais beingreceived
on theothers. Suchacondition,apoll bit detectedon asinglelayer anddatadetectedon
eitherof theotherlayers,is notconsideredasthe startof apoll. This is sothattwo sites
simultaneouslytransmittingdataon the samenetwork layer (e.g.,a triplex anda failed
simplex)do notcauseathird site to detectapoll bit (via its receivedORof the two data
streams)andthusbeginto poll.

6.2.2.3.4 Cross-Strapping of ICIS Channels

One issue important in the design of the contention hardware is the necessity of cross-

strapping redundant channels of the contention hardware (ICIS) to each other. This is

necessitated by the absence of a means to synchronize the activities of the FTPs. An FTP

may begin a poll at any time, provided that the network is in a certain state as described

previously. The poll start event is an asynchronous input to all other FTPs. Therefore, it

must be treated with the same care that is accorded to any input to the FTP. Specifically,

there is asynchronism between the command to contend for the network (from a processor

to an ICIS) and the detection of the proper conditions for a poll to begin. Without

exchange of information between ICIS channels, it is possible that one ICIS of an FTP

would not poll until a subsequent polling sequence, even when no failures are present.

This is illustrated in the scenario in which the control bit indicating that an ICIS channel is

to contend is set by each IOP of a triplex site just as a poll sequence is detected on the

network. Each lOP will set this bit with its local phase of the fault tolerant clock. There

may be sufficient skew between clock phases such that two ICISes will have the bit set just

before the poll is detected with the third having its bit set just after. The ICISes which are

set prior to the beginning of the poll will be able to join in contention, while the ICIS which

was set afterward will have decided that it is too late to join that poll and will wait to join

the next. Information exchange between ICIS will allow all channels to act in concert.

Figure 6-5 shows the state machines of a triplex ICIS which are associated with the control

of network contention. The next state as determined by each ICIS is passed to the other

channels of the FTP by a data exchange and then voted to determine a congruent next state.

The data exchange guarantees that each ICIS will be voting the same set of next states.

Figure 6-6 shows the state exchange for one channel. Sixteen connections in each ICIS for

each bit are required to ensure a congruent set of local next states; these local states are

voted to produce the next state in each ICIS. If the local next states in each ICIS produce a

three-way disagreement (for a triplex FTP), the voted result could be the code for a non-

existent state or a state for which the transition is incorrect. The voter detects a three-way

disagreement and does not allow the next state latch to be updated. Similarly, disagreement

in a duplex ICIS does not allow the change to the next state. The ICIS state exchange

hardware is designed to conform to the same principles of fault tolerance that guided the

implementation of the data exchange network used in the AIPS core FTP.
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6.2.3 ICIS Interface to the FTP

An important aspect of the AIPS FTP architecture is its ability to operate efficiently in a

distributed computational environment. The architecture of the FrP interface to the inter-

computer network has been designed from the very start to facilitate a congruent flow of

data to/from other FTPs efficiently and with minimum software overheads and

intervention. Figure 6-7 shows a schematic of the IC network interface hardware for one

FTP channel. Each FTP channel, regardless of the host FTP redundancy level, listens to

all three layers of the IC network. The ICIS interface electronics for a channel is divided

into three logic modules, each of which interfaces with one IC node as illustrated in Figure

6-7. The ICIS modules interface with the intra-channel voter/selector logic, which is also

called the LMN Voter/Selector and is resident on the shared bus controller card, via three 8-

bit parallel backplane buses. The 24-bit address format for devices in the LMN region of

the FTP address space is also shown in this figure. The two most significant bits in the

CPU address space, when set to ' 1 0', select the LMN region. The next three bits select

one of the devices on the LMN buses. Thus, up to eight devices can be accommodated per

channel. Apart from ICIS, examples of other devices are I/O Sequencers (IOS) and Mass

Memory Interface Sequencers (MMIS). The ICIS, IOS, and MMIS interface electronics

appear as dual ported memory locations to the processor and the specific locations within a

selected device are addressed by bits 0 to 11 and bit 15. (Note that no MMISes have been

designed or implemented for the AIPS Distributed Engineering Model.)

This interface is very powerful, and it is tied directly into the inter-channel data exchange

mechanism. Data can be routed from the interfaces through the intra-channel voter/selector

logic and across the inter-channel voter/selector into the processor memory with a single

processor move instruction. The documentation for the ICIS redundancy management

software discusses the use of the intra-channel and inter-channel hardware for processing

data received from other FTPs on the IC network in detail. Some of the possible data

flows are discussed here.

Figure 6-8 shows the data flow from an ICIS to the CP through the LMN voter/selector.

The LMN bits (I6-18) in the address space specify the operation performed on the data by

the voter/selector logic. Bits ABC (12-14) are set to '0' indicating that data is not routed

through the cross-channel exchange hardware. If the LMN bits are '1 1 1', the LMN voter

reads three locations specified by the 13 address bits marked 'a', performs a bit-for-bit

majority vote on them and deposits the result in the CP memory address specified in the

move instruction. Any disagreements are recorded in the LMN error register. Other

combinations of LMN bits can be used to compare data on any two network layers such as

L and M, M and N, or N and L. Data can also be selected from only one layer and passed

through the voter/selector logic unchanged. Thus, it is possible to route data received from

simplex, duplex, and triplex FTPs through the interface electronics and into the FTP very

efficiently, while at the same time satisfying all the requirements for data congruency.
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Figure 6-7. IC Network Interface for One FTP Channel

As stated previously, Figure 6-8 shows the data flow from an ICIS, through the LMN

voter/selector, through the cross-channel data exchange and then into the CP. In this case,

the ABC bits specify the operations to be performed by the cross-channel hardware.

When the source of data is in the LMN region, any errors detected by the cross-channel

hardware are recorded in an error register which is separate from the error register that is

maintained for accesses in the non-LMN region. This separation of error information

keeps the FDI related to the core FTP separate from the FDI associated with the IC

hardware.

Figure 6-9 shows the data flow from a CP to the ICIS in one FTP channel. Each FTP

channel is enabled to write on only one network layer. By choosing the correct bits in

LMN and ABC fields, a triplex FTP can coordinate the channel activity so that it writes

synchronously to all three network layers.

For more details concerning the design and implementation of the Inter-Computer Interface

Sequencer, refer to Appendix C.
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7.0 CONCLUSIONS AND RECOMMENDATIONS

Inter-Computer Communication Services for the distributed configuration of the AIPS

engineering model have been designed, implemented and tested. This software provides

the redundancy management and operating system support for the distributed

communication between GPCs. The IC Network Manager, IC Layer Managers, and ICIS

Redundancy Manager provide reliable communication over a triple layered Byzantine

Resilient network which dynamically masks single faults. These functions are responsible

for the initial growth of the IC network, the FDIR of the IC network and ICIS, and the

source congruency of incoming messages. The Synchronous Communication Manager,

User Services and the Message Send Receive functions provide local and distributed inter-

function communication as a transparent service to the user. These functions support both

synchronous and asynchronous communication in point to point mode and asynchronous

communication in broadcast mode.

The Synchronous Communication Manager and the IC Network Growth with Contention

functions of Inter-Computer Communication Services have been designed but have not

been implemented and tested. With the exception of these two functions, all functions of

the Inter-Computer Communication Services have been demonstrated.

The AIPS distributed engineering model software, composed of the Inter-Computer

Communication Services, the Local System Services, and the Input/Output System

Services, contains 98,681 lines of Ada source code, which includes 40,100 Ada statements

and comments. When compiled and linked into two executable modules, the CP code

(which includes instructions and global variables) requires 250,107 bytes of FTP memory

and the IOP code requires 847,243 bytes.

7.1 Demonstration and Testing of Inter-Computer Communication

Software

7.1.1 Demonstration Hardware and Software

In order to test the distributed AIPS engineering model under both fault and no fault

conditions, additional hardware and software functions were designed and added to the

system.

In order to test and demonstrate the ICIS redundancy manager, three fault injector boxes

were built and attached to the ICIS cards of FTP 2. The fault injector boxes are able to

inject a fault into an individual layer of the ICIS or the entire channel's ICIS. They are also

able to inject ICIS link faults.

Interstage faults were injected using a switch that grounded the interstage's power supply.

The fault injector previously used to test the FTMP was modified and used to inject pin

level faults into the voting circuitry of FTP 3.
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In order to demonstrate and test the ICCS in both broadcast and point to point
communicationbetweensites, a statusbroadcasttask and pseudoAdvancedLaunch
System(ALS) applicationtaskswereimplementedon thesystem.

7.1.2 Preliminary Testing of Inter-Computer Communication Services

The demonstration of the AIPS engineering model was first done under no fault conditions.

The pseudo ALS application tasks execute on each site. Since each site has a Macintosh

Apple as a front end display, the Macintosh monitor displays the changing variables that are

involved in the point to point communication between sites. A display of the status of the

entire AIPS system (four sites) is also displayed at each site. In o/'der to test the broadcast

mode, faults were injected at each site by turning off the power or disabling a channel's

interstage. All faults were identified at all sites correctly. The pin level fault injector was

also used to inject faults into site 3. Again the correct channel was identified at all sites.

The ICIS fault injector boxes were used to test the ICIS Redundancy Manager. Multiple

faults were injected into the ICIS on site 2. All faults were correctly identified and inter site

communication continued even with multiple faults in the ICIS.

The IC Network Manager was tested by injecting faults manually to various nodes and

links of the IC Network by pulling links and resetting nodes. All faults were correctly

identified and inter site communication continued even with multiple faults in the IC

network.

Extensive systematic testing of the AIPS distributed engineering model for performance

and reliability under fault-free and degraded conditions remains to be done. The hardware

fault injector will be used for much of this testing.

7.1.3 Performance Metrics

Some performance metrics were gathered using both logic analyzers and the real-time clock

to make time measurements. These metrics recorded for a sample IC communication are

presented in Figure 7-1. Twenty samples were taken each time and the numbers were very

consistent. The performance was measured from the time the source application task called

the SEND_OUTPUT routine until the time the sink application task had a message

available. The total time was 28.4 milliseconds. The following components of the AIPS

distributed engineering model were used :

1) two triplex sites (FTP 2 and FTP 3) with 68010 processors with 7.9 MHz. clocks

2) custom IC Interface Sequencers (ICIS) with 7.9 MHz. clocks

3) (three) 2 MBit/second IC buses

4) 15 custom network nodes each with a 68701 processor and a 2MHz. clock

5) Verdix 5.5 compiler/RTS

6) Message length of 64 bytes
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Figure 7-1. IC Communication Latency

8ms
28.4 ms.

As indicated by Figure 7-1, the message latency on the network is about 28 milliseconds.

The performance penalties are caused by the processor, compiler and data exchange

hardware. These penalties are likely to be reduced significantly with advances in

processor, compiler and hardware technologies. As discussed in the next section, the

message latency for a state-of-the-art implementation will be reduced by a factor of 60 to

less than 2 milliseconds. Thus, the system will easily meet the timing constraints of real-

time flight control applications. For example, it will be practical for 100 Hz tasks executing

on distributed processing sites to exchange data over the network at 100 Hz or even higher

frequencies.

7.2 Future Work

The functions of the AIPS System Manager have not been designed or implemented. This

work needs to be done in order to complete the distributed AIPS engineering model. There

are also several areas of AIPS Inter-Computer Communications Services that remain to be

addressed in the AIPS program. These include implementation of the Synchronous

Communication Manager, the implementation of the IC Network Growth with Contention,

and modifications that should be made to the ICCS Transport Layer for functional or

performance improvement. Appendix D contains a list of the proposed modifications to the

ICCS Transport Layer.
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As discussed in the previous section, the processorused for the AIPS distributed
engineeringmodel wasa Motorola68010 operatingat 7.9 MHz clock. The distributed
inter-functioncommunicationtimemeasuredon thishardwareandreportedin thepreceding
sectionwas28.4msec. Otherbenchmarksweremeasuredon both theAIPS 68010FTP
anda 68020FTP with a 14.7MHz clock. The68020FTPoutperformedthe68010AIPS
FTP by afactor of six [5]. It is projectedthat astate-of-the-artprocessorwill outperform
the 14.7MHz 68020by a factor of 10 [6]. Combiningthesenumbers,a state-of-the-art
processorwith amatureAdacompiler shouldoutperformtheAIPS 68010processorby a
factor of 60. Therefore,it is predictedthatdistributedcommunicationexecutingonstate-
of-the-art processorswill easily meet the timing constraintsof real time flight control
applications. Empirical measurementsof AIPS softwareexecutingon state-of-the-art
hardwareshouldbecarriedout to verify theseperformancepredictions.
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APPENDIX A: NODE SPECIFICATION

The input/output network is comprised of simplex nodes. These nodes are interconnected

by links. A node is a communication switching point with five input/output ports. Figure

A-1 is a basic representation of a node. The internal construction of each port of a node is

shown in Figure A-2. Since a node does not have knowledge of the configuration of the

network it must always have its receivers enabled. Reconfiguration commands can be

accepted from any port whether enabled or not. Configuration commands enable selected

ports. Ports are reconfigured whenever necessary and can be temporarily modified for

single response frames. As a message is received on an enabled port it regenerates and

retransmits the received data. At the same time, the message is decoded within the node. If

the message is addressed to the node it responds to the command embedded within the

data. If the message is addressed elsewhere it checks for a valid transmission, latches

observed error conditions and resets the receiver for the next transmission.

Figure A-1. AIPS NODE

Some components are unique to a port and some are shared by all the ports. Figure A-2

shows the basic construction of a node. The components within the dotted lines are unique

to each port and are repeated five times. The components outside of the dotted lines form

the node control section and are not repeated. The following is a description of the basic

components of the node.
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Port Comoonents (uniaue to each port)

I. Receiver

The receiver accepts the signal level on a link and converts it to the internal logic

level of the port. The receiver also isolates the node from electrical failures of the

link.

. Protocol Decoder

The protocol decoder accepts the serial data stream from the receiver and checks for

protocol compliance and transmission induced errors. It then assembles the

message into parallel words utilizing its clock extraction section. These parallel

words are stored in a receive FIFO for the control sequencer to examine.

3. Clock Extractor

Since the data transmission rate is 2 MHz, and all elements (FTPs, nodes, etc.) are

operating on independent oscillators, it is necessary to generate a clock for the

decoder. This clock is synchronized to the first edge of data that it sees, and it

remains usable for the maximum message length.

4. Signal Regeneration Logic

.

The signal regeneration logic is used to reconstruct the fidelity of the transmission.

The passage of the signal through circuit elements in the node and the variability of

the frequency of individual oscillators would degrade the signal if it were not

reconstructed in each node. After several transitions through circuit elements the

transmission could appear to be modified. The input to the regeneration logic is the

OR of all the enabled port receivers and the protocol encoder output. The output of

the regeneration logic is enabled or disabled by the port enable register and is

applied to the input of the port transmitter.

Transmitter

The transmitter converts the output of the regeneration logic into the signaling levels

used on the links.
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Control Components (shared bv all the oorts_

1. Node Sequencer and Control

The node sequencer and control orchestrates the total operation of the node. It

scans the port receive FIFOs for messages received from the links. If a message is

found, it checks the address byte to determine if the message is addressed to this

node. If the message is destined for this node, the sequencer then checks the bytes

that follow the address byte to see if the rest of the message conforms to a proper

node message. The message is acted upon only if it passes all tests. The

sequencer is capable of reading the input FIFOs and writing to the transmitter

FIFO, port enable register, and message buffer.

2. Port Enable Register

The port enable register accepts the decoded commands from the sequencer and

enables/disables the individual port reconstruction logic. The last command is

stored until rewritten by the next command. The contents of this register are

contained within the status message from the node.

3. Message Buffer

The message buffer is a 64 byte long RAM which can be written into by an

appropriate node command. The contents of this RAM can be returned by the node

in place of a status message.

4. Port Activity Register

The port activity register is set whenever a transition is detected on the port receiver.

5. Transmit FIFO

The transmit FIFO holds the node response message for application to the protocol

encoder.

6. Protocol Encoder

The protocol encoder receives the node responses and encodes them into the link

protocol. The output of the encoder is sent to the reconstruction logic of all ports.
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Input Frame Message Format

The following is the format of an input frame sent to a node

1. Opening Flag

2. Node Address

3. Encoded Node Address

4. Operation Code

5. Port Enables and Control

6. Message Sum Check

7. Residue Bits

8. FCS

9. FCS

10. Closing Flag
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Bit assignmentswithin thetransactionareasfollows.

OpeningFlag

NodeAddress

EncodedAddress

Opcode

Port Enable

Sum Check

Residue Bits

FCS

FCS

Closing Flag

bit 7 6 5 4 3 2 1 0

°11111 1 1 11i°
Node Address Bits

Encoded Node Address Bits

Stat Err L Res Res Res
Mode Mode Mode MsgB

Chg Enb Clr E D C B A
Port Once Stat

l | ! | | i

Sum Check Bits

Residue Bits

FCS High Byte

FCS Low Byte

0 1 I I I I 1 0

lo OPENING FLAG: As defined in the HDLC specification, this flag is used to

synchronize and separate transmissions.

2. NODE ADDRESS: The address of the node to which this message is directed.

. ENCODED NODE ADDRESS: The encoded address of the node to which this

transaction is directed. It has been placed in the byte that HDLC has defined as control.

Since control code definition is defined by the user, in AIPS it is used as the encoded

address to help shorten the response time and is the one's complement of the node

address.
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. OPERATION CODE: Contains the code for the function to be performed by the

addressed node. The following is the definition of those functions.

Bit 7 3

1 E

0

0

0

0

6 5 4

1 1 R

1 0 R

0 1 R

0 0 R

1 1 R

1 0 R

0 1 R

0 0 R

E

.

E

E

E

E

E

Modify Port Enable Register as
specified in next byte.

Reserved

Next byte to count register

Next byte to Address Reg H

Next byte to Address Reg L

Next byte to address
specified by Address Register

Next byte to address
specified by Address Register
then +1 to Address Register

No modification to Port Enable

Register (next byte ignored).

All valid input frames result in a response frame from the node. The content of the

response frame is determined by the state of bit 4 as defined below.

Bit 4 R=I Respond from Status Register

R=0 Respond from Message Buffer

The node can be commanded to send a response frame that contains a transmission

error for testing purposes. This faulty frame can occur in conjunction with any of the

above defined modes. A faulty frame is one in which the transmission is truncated, i.e.

aborted. The choice of valid or faulty frames is determined by the state of bit 3 as
defined below.

Bit 3 E=I Respond with faulty Message

E=0 Respond with valid message

Modes 1, 2, 3, 4 and 5 are for specifying the parameters used to generate responses

from the message buffer. If a response is specified from the message buffer, the node

will respond with the number of bytes specified by the counter starting at the address

contained in the Address Register. The contents of the counter and Address Register

m_7 " "
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.

are not changed by a response request. The counter and Address Register are modified

as specified above using modes 3, 4 and 5. Modes 1 and 2 are used to load specified

memory locations within the node. Mode 1 automatically increments the address

register after each byte is stored at the present location specified by the address register.

The Address register can only specify locations from 00C0 (Hexadecimal) to 00FF

(Hex), a total of 64 bytes. Mode 2 is used to specify memory locations in a random

access mode. Bits 2, 1, and 0 specify, in binary, the number of residue bits to be

generated in a response frame.

PORT ENABLES AND CONTROL: If mode 7 is specified in the opcode byte, this

byte is loaded into the port enable register. If bit 7 of this byte is set (=1), then the

port enable register is changed permanently. However, if bit 7 is not set and bit 6 is

set, the contents of the port enable register are modified for this transmission only. At

the completion of this transmission the previous contents are reloaded into the port

enable register. If both bits 7 and 6 are set at the same time, the node will respond as

if only bit 7 were set, i.e. the port enable register will be permanently modified. Bit 5,

if set, specifies that all status registers are to be cleared after this response is

completed.

MESSAGE SUM CHECK: The contents of this byte are calculated such that a

modulo 256 add of the Address byte, Encoded Address byte, OpCode byte, Port

Enable byte, and this byte yield a result of zero. It is computed at the source and

verified in the node to check for errors outside the transmission medium.

RESIDUE BITS: Used to differentiate node messages from all other transactions.

There are three residue bits in a node message and the content of these bits is not

specified.

8. FCS: This byte contains the high byte of the FCS as calculated in the transmitter.

FCS: This byte contains the low byte of the FCS as calculated in the transmitter.

CLOSING FLAG: This byte is defined by HDLC as the transmission terminator or

separator.
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Outnut Frame Messaee Format

The node always responds after a valid input frame. The output frame can be generated

from: (A) the status register or (B) the message buffer.

A. Output Frame From the Statu_ Register

When an output frame is requested from the status register it will take the following form.

1. Opening Flag

2. Node Address

3. Port Activity Seen

4. Transmission Errors Seen

5. Valid Frame Seen

6. Error in Node Messages Seen

7. Node Valid Frame Seen

8. Node Port Configuration

9. Sum Check

10. Residue Bits

11. FCS

12. FCS

13. Closing Flag
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Bit assignments within the Output Frame from the status register are as follows.

bit

Opening Flag

Node Address

Activity Seen

Transmission Errs

Valid Frame Seen

Node Error Seen

Node Valid Frame

Node Port Config

Sum Check

Residue

FCS

FCS

Closing Flag

7 6 5 4 3 2 1 0
n m I

0 1 1 [ 1 [ 1 [ 1 1 0
m m n

Node Address Bits

X X X E D C B A

X X X E D C B A

X X X E D C B A

X X X E D C B A

X X X E D C B A

X X X E D C B A

Sum Check Bits

0 1

X=Reserved

Residue Bits

FCS High Byte

FCS Low Byte

1 [ 1 [ 1 1 1 0
I I

. OPENING FLAG: As defined in the HDLC specification, this flag is used to

synchronize and separate transmissions.

2. NODE ADDRESS: The address of this node.

,

,

ACTIVITY SEEN: Whenever a transition on a link is detected at a port, whether

enabled or not, the corresponding bit in the byte is set to a 1. These bits remain set until

a clear status command is received in a valid input frame.

TRANSMISSION ERRORS: Whenever a node detects a transmission error, a bit is set

for the corresponding port. These bits remain set until a clear status command is

received in a valid input frame.
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10.

VALID FRAME SEEN: Whenever a frame is seen without transmission errors, the

corresponding port bit is set. These bits remain set until a clear status command is

received in a valid input frame.

NODE ERRORS SEEN: Whenever a frame is received addressed to this node and

without transmission errors but not honored by this node, the bit corresponding to the

port on which it was received is set. These bits remain set until a clear status command

is received in a valid input frame.

NODE VALID FRAME: Whenever a node respondsto an input frame the

corresponding port bit in this byte is set. This bit is set before a response transmission

and cleared after the response transmission if a clear status command is received.

NODE PORT CONFIGURATION: This byte is normally set to the present state of the

port enable register. However, if the input transmission had requested a change of port

configuration for this transmission only (ENB ONCE bit set), then the byte is set to the
state to which the node will revert after this transmission.

MESSAGE SUM CHECK: The contents of this byte are calculated such that a modulo

256 add of the Address byte, Activity Seen byte, Transmission Errors byte, Valid

Frame Seen byte, Node Errors Seen byte, Node Valid Frame byte, Node Port

Configuration byte and this byte yield a result of zero. It is computed by the node to

enable user detection.

FCS: The FCS bytes are a cyclic redundancy calculation performed by the HDLC

transmitter and appended to the end of the frame.

11. CLOSING FLAG: The closing flag is the frame terminator.

B. Qutput Frame From the M¢ssage Buffer

An output frame from the message buffer is intended to be used as a test tool. The output

frame information field contains the number of bytes specified in the counter starting at the

address in the Address Register. The counter and Address Register must have been

initialized prior to a request. The values in these registers remain unchanged until they are

rewritten. A byte count of zero will result in 256 bytes being transmitted. The output

frame will take the following form.

1. Opening Flag

2. Contents of Address specified by the Address Register

• A-11



3. Contents of Address specified by the Address Register + 1

o •

5, •

6. Contents of Address Specified by the Address Register + Counter

7. Residue bits

lh

8. FCS

9. FCS

10. Closing Flag
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APPENDIX B: TRANSPORT LAYER USER'S GUIDE

This appendix describes the interfaces to the Transport Layer available to a user who wants

to send and receive messages. As described in Section 4.1.1, such a user expects to

transmit and accept messages but without having any Session Layer functions performed

for it (perhaps it is the Session Layer).

B.1. User Identification

4

All users of the Transport Layer must identify themselves, both to other users and to the

Transport Layer. This can be done by updating one of two packages:

ICCS_SYSTEM_USER_IDS (for system users) or ICCS_APPLIC_USER_IDS (for

application uers). Listings of these packages are shown in Figures B-1 and B-2. These

packages have defined a fixed number of user IDs, some with names such as "UNUSED"

or "RESERVED" to indicate IDs planned for but not yet actually used. To enter a new user

ID, a descriptive name must be substituted for one of the unused names. This name must

be entered in two places: in the type ic_user_id is . . . statement and in the for

ic_user_id use.., statement. Note that only one of the two packages (system user

IDs or application user IDs) should be updated for any given user.

For example, to add a DATA_STORAGE application as a new user, DATA_STORAGE

would replace APPL_UNUSED_7 in both the type ic_user_id is... statement and in

the for ic_user_id use.., statement in the ICCS_APPLIC_USER_IDS package.

Then the ICCS_APPLIC_USER_IDS package and the ICCS_USER_SERVICES_APP

package must be recompiled, as well as any other application tasks which reference these

two packages.

Similarly, to add a RESOURCE_ALLOCATOR task as a new system user, RESOURCE_

ALLOCATOR would replace RESERVED_13 in the type ic_user_id is ...

statement and the for ic_user_id use ... statement in the ICCS SYSTEM_USER_IDS

package. Then the ICCS_SYSTEM_USER_IDS package and the

ICCS_USER_SERVICES_SYS package must be recompiled, as well as any other system

tasks which use the IC communication services and therefore reference these two packages.
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-- Package Spec ICCS SYSTEH_USER_IOS
-- Contains ids for ell users of IC Communication Services. These are

-- kept in a separate package so tP_mt new users can be added without

-- h_ving to recompile the IC soft, are.

-- Name Date Description

-- L. B_ulr_a rdt ZO-Oot-1988 Crea_ed

package ICCS_SYSTEH_USER_IDS is

type icuser_id is [HON_ICCS_USER,

CPSTATUS_REPORTER,

IOP_STATUS_REPORTER,

CP_RENOEZVOUS_HGR_

IOP_RENOEZVOUS_IIGR,

CPGLOBALDATA_HGR,
IOP_GLOBALDATA_HGR,

CP_TESTAPPL,

IOPTEST_APPL,

CP_ST_BROADCAST,

IOP ST BROADCAST,
LOCAL_ICIS_H(;R,

ZC_NETHORKHGR,

RESERVE9_13_

RESERVED_I_,

RESERVED_IS,

APPL_UNUSED_I_

APPL_UNUSED_2,

APPL_UHUSED_3,

APPL_UNU_ED_4_

APPL_UNUSED_Sp

APPL_UHUSED6_

APPL_UNUSED_7,

APPLUHUSED_8,

APPL_UNUSED_gp

APPL_UNUSED_10_
APPL_UHUSED_11,

APPL_UIqUSED_IZ,

APPL_UNUSED_13,

APPL_UNUSED_14,

APPL_UNUSED_15,

APPL_UNUSED_16,

APPL_UNUSED17,

APPL_UNUSED_18,
APPL_I_USEO_19,

APPL_UIqMJSED_20))

-- user ids

-- System users

-- Application users

for ic_user_id'size use 8)

Figur e B-1. ICCS_SYSTEM_USER_IDS Package
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for ic_user_id use

(NONICCS_USER => O,
..........................

CPSTATUS_REPORTER => 1,

ZOP_STATUS_REPORTER => Z,

CP_RENDEZVOUSPIGR => 3,

ZOP_RENDEZV__t'tGR => _,

CP_GLOBALDATA_HGR => 5,

ZOP_GLOBALDATA_HGR => 6,

CP TEST_APPL => 7,

ZOP_TEST APPL => 8,

CP_ST_BROADCAST => 9,
lOP ST BROADCAST => 10,

LOCAL_ZCIS_I_R => 11,
ZCNETHORK_HGR => 12,

RESERVED_13 => 13,

RESERVED 14 => 14,

RESERVED_IS => 15,
..........................

APPL_UNUSED_I => 16,

APPL_UFK_ED_2 => 17,

APPL_UNLF3ED_3 => 18,

APPL_UI_/SED__ => 19,

APPL_UFK_ED_5 => 20,

APPL_UI_JSED_6 => Z1,

APPL_UNt_ED_7 => 2Z,

APPLUNUSED_8 => 23,

APPL_UNLr3ED_9 => 2_,

APPL_UI_SED_IO => 25,

APPL_Ui_JSEDll => 26,

APPL_UNt_ED_12 => Z7,

APPL_LJIqUSED_13 => Z8,

APPL_I_IUSED_I_ :> Z9,

APPLUNt_ED_15 => 30,

APPL_UHUSED_16 => 31,

APPL_UNL_ED_17 => 32,

APPL_UHUSED18 => 33,

APPLUHL_ED_19 => 3_,

APPL_UI_SED_20 => 35 )_

ZCCS_SYSTEH_USER_ZDS)

Figure B-I. ICCS_SYSTEM_USER_IDS Package (cont.)
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-- Package Spec ICCS..APPLIC_USER_XDS
-- Con_alns id$ for all users of IC Communication Services. These are

-- kep_ in a separate package so _P_ r_ users can be added wi_hnu_

-- having _o recompile _he 1C sof{_rare.

-- Name Da_e Oescrip_ion

package ICCS_APPLIC_USER_IDS is

_ype ic_user_id is (NON_ICCS_USER,

RESERVED_l,

RESERVED_Z,

RESERVED_3,

RESERVED_4,

RESERVED_5,
RESERVED_6,

RESERVEO 7,

RESERVED_8_

RESERVED 9,

RESERVED_lOp
RESERVED_11_

RESERVED 12,

RESERVED_13,

RESERVED_I_,
RESERVED_IS,

CCP,

RANGE_SAFETY,

PROP CONTROL,

SENSOR PROCp

HIHO_DETERMIN,

COttHAND_AND_TELEH,

r APPL_UNUSED_7,

APPL_UNUSED_8,

APPL_UNUSEDD,

APPL_UNt_ED_lO,
APPL_UNUSED_11,

APPL_UNUSED_IZp

APPL_UMJSEO_13,

APPL_UNUSED_I_,

APPL_UNUSED_15,

APPL_UNUSED_16,

APPL_UHUSED_17,

APPL_UHUSED_18,

APPLUHUSED_19,

APPL_UNUSED_20)_

°

l -- user ids

-- System users

-- Application users

for ic_user_id'size use 8)

Figure B-2. ICCS_APPLIC_USER_IDS Package
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for ic_user id use

(NOIt_ZCCSUSER => O,
.............................

RESERVED_I => 1,

RESERVED 2 => 2,

RESERVED 3 => 3,

RESERVED _ => 4,

RESERVEO 5 => 5,

RESERVED 6 => 6,

RESERVED 7 => 7,

RESERVED 8 => 8,

RESERVED 9 => 9,

RESERVED 10 => 10,
RESERVED 11 => 11,

RESERVED 1Z => 12,

RESERVED 13 => 13,

RESERVED 14 => 1_,

RESERVED 15 => 15,

CCP => 16,

RANGE_SAFETY => 17,

PROP CONTROL => 18,

SENSOR_PROC => 19,

HINO DETERMIN => 20_

COIIMANO_AND_TELEM => 21,

APPL_UNUSED 7 => 2Z,

APPL_UN_ED_8 :> 23,

APPL_UHUSED_9 => Z_,

APPL_LR4USEO_IO => 25,

APPL_UNUSED_11 => Z6,

APPLUNUSED_12 => 27,
APPL LR4USED 13 => 28,

APPL UNUSED_I_ => 29,
APPL UNUSED 15 => 30,

APPLUNUSEO_16 => 31,
APPL_UNUSED_17 => 32,

APPLUNUSED_18 => 33,
APPL_UNUSED_19 => 3_,

APPL_UNUSED_20 => 35 )_

end zCCS_APPLZC_USER_ZDS_

Figure B-2. ICCS_APPLIC_USER_IDS Package (cont.)
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A maximum of 35 user IDs (15 system, 20 application) have been provided. If either

subset exceeds its maximum, both ICCS_SYSTEM_USER_IDS and ICCS_APPLIC_

USER_IDS packages must be modified to reflect the new maximum. Then both of these

packages and the system tasks and application tasks which reference them must be

recompiled.

If the total number of user IDs exceeds 41, the ICCS_DATA_TYPES package must be

modified, specifically, the usert type. Then all packages dependent directly or indirectly

on this package must be recompiled. The ICCS_DATA_TYPES package is shown in

Figure B-3. The recompilation order for all dependent programs is shown in Figure B-4.

Package Spec XCCS_DATA_TYPES

Contains da_a types and high-level variables rela_ed _o IC com_Jnication

Name Oate Oescr ip _ ion

L. E_JrkJ_ard_ 23-Hay-1988 Crea_ed

_i'th SYSTEH_ LSS ON CARD_RAH, UNCHECKED_CONVERSZON_

wi_h TCC$ USER_OATA_TYPES, LSS_HEHORY ;

use TCCS.USER_DATA TYPES, LSS__HEHORY;

package ICCS_DATA_TYPES is

_q_e ms_* is range -2_31..2_31 - 1;
for msec _'size use 32t

-- from RTS _i_rlst_ppor{ package

type usor__ is range 0.._0t

for user _'size use 8;

-- ,y definition of user_id

-- should ma_ch what's in Sy_te. Oser_Ids

-- and Applic_User Ids

-- Identify this GPC

THZS_GPC : gpc__l

end ICCSDATA_TYPES_

Figure B-3. ICCS_DATA_TYPES Package
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--- RECOHPILATION ORDER _ ICCS_DATA_TYPES package has been modified
.......................................................................

--- ICCS Packages

ICCS_DATA_TYPES

ICCS_ICIS_TYPES

ICCS CP IOP_COttHON

ICCS CP IOP_COHHON_B

ICCS_USER_SERVICES

ICCS_USER_SERVICES_SYS

ICCS_USER_SERVICES_APP

ICCS_ERROR_LOG

ICCS_HESSAGE_SEND_RCV

ICCS RH OBJS

ICIS_LOCAL_HANAGER

ICCS_HESSAGE_SENO RCV B

ICCS_HESSAGE_SEND RCV SI

ICCS_HESSAGE_SEND RCV SZ

ICCS HESSAGE_SENO RCV $3

ICCS_USER_SERVICES_B

ICCS_USERSERVICES_SYSB

ICCS_USER_SERVICES_APP_B

ICCS_ICIS_INIT

ICCS_ERROR_LOG_B

--- ICIS RH Packages

ICCS_RH_UTIL
ICCS RH PACKET

ICCS_P.H_CONG_DATA

ICCS RM ACTIVE_LAYER
ICCS RM BC ANALYSIS

ICCS RH SOLC

ICCSRH_UTIL_B

ICCS_RttPACKET_B

ICCSRH

ICCS P.tt B

ICCS RH CONG_DATA_B

ICIS_LOCAL_HANAGER_B

Figure B-4. Recompilation Order for Packages Dependent on

ICCS DATA TYPES
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--- NETHORK HGR FILES dependen_ on ZCCS packages

ICCS_NET_tIGR_B

ICCS_NE T_HGR_CONFI G_B

I CCS_NET_tlGR_COL LECT_B
ICCS_NET HGR_HZSC_B

ICCS_NET_SELF_TEST_B

--- GPC FDIR Packages dependen_ on ICCS packages

LSS_CONF IG_B

ICCS_FDIR TIHE_CP

ICCS..FDIR_TZHE_IOP

ICCS FDIR_TIHE_CP_B

ICCS FDIR_TIHE IOP B

ICCS TFDI_IOP_B

ICCS TFDZ_CP_B

LSS_SYNC_B

--- DISPLAY Packages c_oenc_m_ on ICCS packages

ICCS_HAC_ZO • A

ZCCS_HAC_ZO_B • A

ICCS_HAC_DISP • A

ZCCS_HAC DTSP_B. A
ZCCS HAC_APPL_DZSP

ICCS HAC_APPL_DZSP B

ICCS HAC_DISP_HAIN_CP

ICCS_HAC_DISP HAZN CP B

ICCS._HAC_DI SP_HAZN_IOP

ICCS_HAC_DISP_HAIN IOP B

ICCS_DTSP HAIN_CP

ICCS_DISP_HAZN CP B

ICCS_DZSP_HAIN_IOP

ZCCS_DISP_HAZN IOP B

--- CP AND IOP HAIN PROGRAHS

ICCS_HAIN_PRO(;_CP

ICCSHAIN_PROGIOP

Figure B-4. Recompilation Order for Packages Dependent on

ICCS DATA TYPES (cont.)
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B.2 Interface Routines

This section describes the interface routines available to a Transport Layer user.

Figure B-5 lists the available routines. A brief description and the name of the defining

package is given for each routine.

Figure B-6 describes the parameters required for each routine. In addition, each routine is

identified as being either a function (F) or a procedure (P).

Figure B-7 lists the packages that define the required data types.
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B.3 Example

Figure B-8 is a partial listing of code from a Sensor Processing application that was written

for demonstration purposes. This listing shows the calls to the various Transport Layer

interface routines. Because this task needs to execute periodically, whether or not it has

received any input, it polls for incoming messages.

Figure B-9 shows how a task might schedule itself to execute only when there are input

messages waiting for it. .
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-- SENSOR PROCESSTNG Application

-- Simulates reading various sensors.

-- Sends _he sensor da_a _o a Central Command & Processing application
.......................................................................

_i_h ZCCS_APPLIC USER_IDS, TCCS_USER_OATA_TYPES, ICCS_USER SERVICES_APP !

use ICCS_APPLIC_USER_IOS, ICCS USER DATA_TYPES_ ICCS_USER_SERVZCES_APP;

with LSS_TASK_T DS )

wi_h ZCDEHO APPLZC_DATA

use ZCDEHO_APPLIC_DATA

package ZCDEHO_SENSOR_PROC is

-- Task definilion

_ask _ype SEHSOR_PROC__ is
pragrma priority 1;5))

end SENSOR_PROC__)

SENSOR_PROCESSZNG : SENSOR_PROC_

HY_ID : cons_an_ ic_user_id := SENSOR_PROC;

function Ge__Id is ne_ LSS_Task_Ids. IdOf (SENSOR PROC_);

Sensor_Proc_Id : LSS_Task_lds.Task_Zd := Gelid (SENSORPROCESSING|;

b : boolean := ZDENTIFY_TASK_LOCATIOH (HY_IDp

SENSOR PROC SITE,
CP,

Sensor Proc_Id)!

end ICDEHO_SENSOR_PROC_

Figure B-8. Example: Sensor Processing Application
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with LSS_EVENT_CNTLp UI_HECKED_CONVERSZON_

with LSS SCHEDULER_

use LSS_SCHEDULER_

package body ICDEHO_SENSORPROC is

-- output to CCP task_ i.e.,
-- valid sensor data

valid_sensor_data : valid_sensoP_data_t_

-- input from CCP task, i.e.,
-- validation limits or sensor niode comm_nds

sensor_info : sensoP_info_t_
validation_limits : s_nsoP_infot_

sansor_mo__cmds : sensoP_info_t}

-- output to Flight Safe_y, i.e.,

-- isds signals

isds_sig_als : isds signals_t;

task body SENSOR_PROC_t is

&._avy_input_event : LSS_Event_Cntl.a_Event;

source_gpc : gpc_t;

source_task : ic_userid_

inl_Jt to process : boolean_

in_Bsg_prio : msg_.prioritytJ
er_r code : output_error_t)

execUtion count : integer_

begin

Input_Setup (HY_ID, -- allocate input buffers

6,

sensor_info'size/8,
false,

dummy_input_event|;

Output_Setup I HY_ID,
4,

max_output )

-- allocate outpu_ I:x=ffers

Other initialization

Figure B-8. Example: Sensor Processing Application (cont.)
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loop

NATT FOR SCHEDULE )

-- First see if I have any input (validation limits or

-- sensor mode comBYar_s ) from the CCP task

Get_Tnput !HY_ID,

sensor_in fo ' address,

source gpc •

source task,
in_msg_pr io •

input_toprocess ) )

while input_to_process loop

if source_task = CCP then

-- get all input messages

-- input from Central Comand & Processing ...

else

null)

end if_

-- input I wasn't expecting

Get_Input I HY_IO, -- see if there's more input

sensor_info'ack_ress,

source_gpc,
source_task,

in_msg..prio,

input_to_process)_

end loop) -- while input_to_process ...

-- Read the various sensors here and generate valid sensor

-- data record for the Central Commar_/Processing task

Ser__Output (HylId, -- send the data
valid sensor_cFate'address,

CCP_SITE,
CCP,

valid_sensor_data'size/8,

1• -- msg priority

O, -- user msg id
false, -- no delayed error checking

error_code))

if error code /= NO_ERRORS khan

r_ll) -- Do necessary error handling here
end if;

Continu.a with proceesing

Figure B-8. Example: Sensor Processing Application (cont.)

B-21



task body RANGE_SAFETY_t is

my ir4_t_event : LSS_Event Cntl.a_Event)

source_gpc : gpc_t ;

source_task : ic user_id;

input_to_process : boolean)

in_msg_prio : msg_prlority t)

function gen_to_isds is new UNCHECKED_CONVERSiON

! gen_purpose_p, isds_s igr-_ls_p ) ;

function gen_to_de is new UHCHECKED_COHVERSION

(gen_purpose_p, flight_destruct_enable p ) )
function addr to_gen is new UNCHECKEO CONVERSION

[ System.address _ gen_.purpose_p ) ;

begin

Input_Setup (MY_ID, -- allocate input buffers
4,

gen purpose_rec ' s ize/8 •
tr_Je,

mj_inl_Jt_event ] )

Schedule (Range_Safety_Id, -- schedule myself to run when there's

false, -- input

Same_Priority,
(On_Event_Se_, my_input_event, tr'ue),

No_Repetition,

No_Completion))

loop

NAIT._FOR_SCHEDULE;

Get_Input ( HY_ID,

gsn..purpose_ r_ ' |ckJress,

source..gl=<=,

source task,
in_ms__pr io,

ir_put_to_process ) )

-- Do processing ...

Figure B-9. Example: Task Scheduled by Arrival of Input
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APPENDIX C. ICISHARDWAREIMPLEMENTATION

A block diagram of the ICIS is shown in Figure C- 1. The ICIS is programmed by an FTP

which has access to the dual port memory and hardware registers that are associated with

the ICIS. The ICIS utilizes a time shared 8K x 8 x 3 memory for program and input/output

buffer storage. More specifically, there are three 8K x 8 memory devices in each ICIS; one

device is associated with each of the three redundant network layers. This memory can be

alternately accessed by the FTP and the ICIS micmsequencers. An overview of the major

logic blocks of the ICIS is given in Figure C-1. This section describes the instructions and

registers available to ICIS users.

P SEI._ MEMORY pk_MREQ

C LRP_2ONTROLLERp_. MCLR

ADDRESSMUX

|
I

•. _oL.p'J_
r UNSOL

MEMORY

8KX8

_ ADDRESS
DECODER

CHAIN I :STATUS
R_TS"I"_R /

MD
m

PD

I  TC" p "
POLL

LOGIC

FLAG ERS
HDLC

_HUTDOWN &

INPUT
LATCH

__ OUTPUTLATCH

INTERFACE

STATUS
REGISTER

M_RRFACE

DB

DATA ]

REGISTER ]

ADDRESS L

REGISTER]

ADDRESS
COUNTER

Figure C-1. ICIS Logic Blocks

C-1



ICIS Logic Blocks

MEMORY CONTROLLER - The Memory Controller arbitrates between memory

accesses from the FTP and the ICIS. The memory is time shared via the processor

signal 4F16. When 4F16 is high, the CP or IOP can access the memory and when it is

low, the ICIS can access it. The memory controller generates chip select, read-write,

and output enable at the appropriate times.

ADDRESS MULTIPLEXER - The Address Multiplexer selects between the FTP and

ICIS address buses. The output of the multiplexer is the memory address bus (MA).

When 4F16 is high, the processor address bus is connected to memory and when it is

low, the ICIS memory bus is connected to the memory.

MEMORY - The ICIS memory consists of three byte-addressable memory devices each

containing 8192 bytes. There is one memory device for each of the three network

layers. The redundancy of the memory devices provides separate storage for each of

the three independent data streams (one stream generated per the network layer). Note

that the address and data buses for the memory devices are triplicated as well as all of

the latches and multiplexers used to control accesses to the memory devices. This

memory is also used to store the instruction chains and output packets. The f'u'st two

bytes of memory are used for the solicited chain pointer and the second two bytes are

reserved for the unsolicited chain pointer.

FTP INPUT LATCH - The FTP input latch is a buffer driver used to transfer data from

the FTP data bus (PD) to the memory data bus (MD).

FTP OUTPUT LATCH - The FTP output latch is a buffer driver used to transfer data

from the memory bus (MD) to the FTP data bus (PD).

ICIS INPUT LATCH - The ICIS input latch is a buffer driver used to transfer data

from the internal ICIS data bus (DB) to the memory data bus (MD).

ICIS OUTPUT LATCH - The ICIS output latch is a buffer driver used to transfer data

from the memory bus (MD) to the internal ICIS data bus (DB).

ADDRESS DECODER - The Address Decoder decodes the individual hardware

registers which are located in the memory space between 1016 and 1F16. The

addresses and details of the hardware registers are described in a following section.

INTERFACE COMMAND REGISTER - The Interface Command Register is a write

only register that contains the command mode. See the following section on the details

of the ICIS registers.
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SEQUENCER- The Sequenceris themain control elementof theICIS. This logic
block canbe further subdividedinto a mainsequencerassociatedwith theL network
layerandtwo slavesequencersassociatedwith theM andN layers. Whenstartedthe
main sequencerfetches the instructions from the L layer memory, stores them
internally, anddecodesandexecutesthe microcyclesby generatingthe appropriate
control signals. The slave sequencersareonly releasedfor independentoperation
during theexecutionof an INPUT instruction. In this situation,they areresponsible
for managingthetransferof incomingdatafrom theHDLC deviceto the local layer-
specificmemorydevices.

CHAIN STATUSREGISTER- TheChainStatusRegisteris areadonly registerthat
containsthe chain and contentionlogic statuswithin the ICIS. Seethe following
sectionon thedetailsof theICIS registers.

INTERFACE STATUS REGISTER- The Interface StatusRegister is a read only
registerthatcontainsthestatusof theICIS. Seethefollowing sectionon thedetailsof
theICIS registers.

ADDRESSCOUNTER- TheAddressCounterstoresthecurrentmemoryaddressthat
theICIS is using. It pointsto thechain instructions.During an INPUT instruction,it
points to the location where the incoming data byte is to be stored. During an
OUTPUT instruction, it points to the byte to be next sent. It is loaded during
instructionfetchesandincrementedduring theinstructionmicrocycles. The address
counteris triplicated;oneexistsfor eachlayer.

ADDRESSREGISTER- TheAddressRegistercontainsthetimedaddressesusedin the
instructions. During anINPUT instruction,it containstheaddressof theHDLC input
register. During an OUTPUT instruction, it contains the addressof the HDLC
transmitterholdingregister.

DATA COUNTER- TheDataCountercontainsanydatathatis incrementedduringan
instruction. During an INPUT instruction, it accumulatesthe byte count of the
incoming data. During an OUTPUT instruction, it counts the number of bytes
transmitted. In the latter case,after the output data hasbeen sent,it signals the
sequencerto terminatetheinstruction.Thedatacounteris triplicated.

DATA REGISTER- The Data Registeris usedto temporarily storedatawithin an
insmaction.Duringan INPUT instruction,it holdstheincomingbytefrom theHDLC
receiver register until a memory cycle can be performed to store it. During an
OUTPUT instruction,it holdsthenext byteto beoutputteduntil theHDLC transmit
holdingregisterrequestsit. Thedataregisteris triplicated.
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HDLC - The HDLC device contains independent transmitter and receiver sections. The

HDLC transmitter section receives the data bytes, appends opening and closing flags,

and encodes and transmits the data. The receiver section searches the data stream for an

opening flag. When it detects one, it synchronizes itself with the data fields and

decodes the data stream into bytes for storage. In both modes, the device generates the

handshaking signals necessary to control the interface. The HDLC device is triplicated;

one device interfaces with each individual network layer.

FLAG SHUTDOWN - The flag shutdown logic guarantees that the external IC network

transmissions lines are always left in the same state. The ICIS uses the same IC

network lines to communicate and poll. In order to be able to perform both functions

on the same lines, all operations must leave the lines in a known state. The HDLC

protocol allows the signalling lines to be left in either state, and in fact the device used

to generate the HDLC protocol does leave the line in either state depending upon the

data content of the message. The ICIS contains additional logic, which upon sensing

the end of a message, utilizes the closing flags to turn off output with the line in a low

state without generating any extraneous data. When the next output message is started,

the first flags are used to turn the logic back on to the state that the HDLC device

attempted to leave the line. Again this is done without generating any extraneous bits.

The polling logic is designed so as to always end with the line low. The flag shutdown

logic is triplicated.

DRIVERS and RECEIVERS - These drivers and receivers allow the ICIS to interface

to the IC network. The drivers are enabled by an engage line from the FTP. The

receivers are always enabled but the input is controlled by the HDLC device. All

drivers and receivers are triplicated.

POLL LOGIC - The poll logic allows the ICIS to contend with other ICISes to gain

control of the IC network. When enabled, the poll logic monitors the IC network

waiting for a quiet time and then starts a poll. If it wins, it starts a solicited chain.

Alternatively, if it loses, it waits for the next poll or quiet time and tries again.

If the ICIS is to contend for the network, the bits in the Interface Command Register

must be set to "execute, poll, and execute unsolicited" mode. The logic will start the

chain that is identified by the unsolicited pointer while it simultaneously primes the

polling logic.

Note that the instruction distinguished by the unsolicited pointer is not the "current"

instruction. For example, in the case where the current instruction is an INPUT which

is waiting for unsolicited input, this instruction will be preempted by this polling and

transition to solicited mode operation. A subsequent transition back to unsolicited

mode will cause the fetch of the instruction following the INPUT instruction. Further,
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the input buffers associatedwith theINPUT instruction will haveheadervaluesas
initializedat thestartof theINPUT instruction(i.e., abytecountof zero).

The polling logic waits for either a poll to begin or the bus to go quiet for 512
microseconds.Wheneitheroccurs,thelogic assertsastartbit for 48microsecondson
all enablednetworklayers.This givesall otherICISestime to recognizethestartof a
poll andjoin if required. At theendof thepoll bit, the logic comparesthestateof its
input lines from theindividual layerswith thestateof its outputline. (Note that the
stateof theredundantinput linesareeithervotedin Triplex modeor OR'din all other
modes). If anotherICIS is joining the poll, the input line will be high and the ICIS

must continue to poll. It next asserts the redundancy encoding priority bits, one at a

time for 28 microseconds, and then asserts the remaining 9 priority bits. At the end of

each 28 microsecond period, it compares its output to what it perceives on the bus. If

what it receives is the same as what it transmits, it must continue to the next bit because

no decision can be made. If it receives a zero when it is transmits a one, then the ICIS

has won because it has a higher value than all others that are contending. If it receives a

one while it is transmits a zero, then it has lost because it has a lower value than at least

one other contender. As a result, it will stop transmitting and wait for another poll to

begin. When the ICIS decides that it has won, it will abort the unsolicited chain and

perform a context switch to the solicited chain and subsequently execute it.

If the IOL bit is set in the Interface Command Register, the three variable priority bits

are incremented after each loss of a poll sequence (until they reach the maximum value

of 7). They will remain at the maximum value until altered by an FTP program or an

ICIS chain. If an ICIS detects a data bit while it is poUing, it will terminate the poll and

set the error bit Poll TX Fail in the Chain Status Register.

TIME DRIVER - The time driver allows the chain to read a time byte that appears on
the shared bus.

MONITOR INTERLOCK ENGAGE - The AIPS FTPs generate a voted engage signal

which is used to enable external functions. In a faulty FTP this signal will not be

asserted. The ICIS uses this signal to enable its bus driver, a device that connects it to

the IC network. Therefore, a faulty FTP and/or faulty ICIS can be disconnected and

prevented from bring down the IC network.
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ICIS _ Formats

The ICIS can execute a limited number of instructions. The following paragraphs detail the

form and function of the ICIS instructions.

NOP (0000 0000) - This instruction updates the chain pointer to the address of the next

sequential instruction. At the end of the NOP, the ICIS fetches that instruction.

BRANCH (2000 dddd) - This instruction jumps to the instruction contained at location

'dddd' and executes it. The Chain Pointer will be updated to point to the next

instruction (dddd+4).

MOVE (40ss dddd) - This instruction will move a byte, located at any location 'ss'

within the first 256 bytes of ICIS memory, to the location specified by 'dddd'. MOVE

can be used to store the current value of a hardware register or store a preset value into

a register.

MOVE IMMEDIATE (60xx dddd) - This instruction allows a constant, xx, to be stored

into the destination dddd.

INPUT (801B dddd) - This instruction will store incoming HDLC bytes in the buffer

area specified by 'dddd'. At the start of execution of this instruction, the byte reserved

for the input byte count is set to zero and the current value of the contention status is

stored within the data buffer. As bytes are received, they are stored at the specified

buffer locations and an internal byte count is incremented. The incoming data streams

for the redundant network layers are buffered independently in the redundant memories

and independent byte counts are maintained for each layer.

Completion of the INPUT instruction is determined by the incoming layer activity. A

valid HDLC packet always ends with a closing flag. Logic is provided to deal with the

possibility that the incoming packets are skewed in time across the three layers. Once a

closing flag is seen on any one of the three layers, a 12 microsecond delay in the

termination of the INPUT instruction is provided if either of the other two layers

indicate data activity (i.e., they are not idle). Instruction termination causes the ICIS to

then store the byte count, HDLC status registers, and the TIME byte within the

incoming packet buffer area. The INPUT instruction has now completed and the next

sequential instruction is fetched and executed. The maximum number of data bytes that

a single instruction can store is 122. If the INPUT contains more than 122 data bytes,

data will be lost. However, the buffer never exceeds the 128 bytes allotted to it.

Additionally, the byte count, which includes the status bytes, never exceeds 128 bytes.

Furthermore, this instruction ends if the time allotted for response is exceeded (the

value programmed into the timer is reached before a data byte being received).
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However, in this situation,noneof the statusinformation (HDLC IR & SRregisters,
timeandbytecount)is saved.

An incomingdatapacketalwayshasthefollowing format:

By_ count

HDLC IR reg_r

HDLC SR regis_r

TIME byte

con_n_ of Chain Sm_s Re_ster

dam Offrst byte)

dam (_st byte received)

OUTPUT (E01C ssss) - This instruction will transmit the bytes specified in the buffer

starting at location 'ssss + 1'. The f'LrSt byte at location 'ssss' contains the value of the

expression, 8016 - NB, where NB is the number of bytes to be transmitted. This

instruction terminates when all bytes have been transmitted. The format of the output
buffer is as follows:

Byte Count (80 16" NB)

data

klst data byte

ICIS Memory Map

The reserved memory locations in the dual port rnemory of the ICIS are described

below. Addresses 1016 - 1F16 axe hardware registers; however, they are addressed in

the same manner as RAM locations. All memory addresses, including the hardware

registers, are accessible by the CP and IOP.

ADDRESS FUNCTION

0 R/W

1 RAV

2 R/W

3 R/W

Solicited Chain Pointer - High Byte (RAM)

Solicited Chain Pointer - Low Byte (RAM)

Unsolic. Chain Pointer- High Byte (RAM)

Unsolic. Chain Pointer - Low Byte (RAM)
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10 R

11 W

11 R

12 W

13 W

13 R

14 W

14 R

15 R

15 W

16

17

18 R/W

19 R/W

1A R/W

1B R

1B W

1C R

1C W

1D R

1E

1F

Chain Status Register

Interface Command Register

Interface Status Register

Timer Limit Register

Poll ID Register - 6 bit polling address

L&M Network States

Poll Prio Register-3 bit pdo & polling level

Poller and N States

Tune

"Location 15 Register"

Reserved

Reserved

HDLC Control Register 1 (CR1)

HDLC Control Register 2 (CR2)

HDLC Control Register 3 (CR3)

HDLC Receiver Holding Register (RHR)

Address Register (AR)

HDLC Interrupt Register fIR)

Transmit Holding Register(THR)

HDLC Status Register (SR)
Reserved

Reserved

With the exception of the addresses specified above, the rest of the ICIS's dual port

memory can be used for any desired function. However, it should be noted that the

MOVE instruction can only use the first 256 addresses for the source byte.

A description of the hardware registers and their use is presented in the following

paragraphs.

SOLICITED CHAIN POINTER (ADDR = 00 & 01) - The ICIS can execute two types

of chains, solicited and unsolicited. Solicited chains are defined as command/response

chains and are meant to be executed when the FTP has control of the network.

Unsolicited chains are defined as those that are performed when the FTP does not have

control of the network but when it must accept all frames addressed to it. On the IC

network, unsolicited chains are executed whenever the FTP does not possess the

network, including while waiting for a poll to be won.

The Solicited Chain Pointer is used by the ICIS to indicate where the next instruction of

a solicited chain is located. When a new chain is to be started, this location is loaded

with the address of the fast instruction to be executed. It must be loaded before an

execute chain command is issued. As each chain instruction is fetched, this location is

updated to point to the next sequential instruction. The FTP can read this location at
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any time. However,sincetheICIS writes the locationsa byteat a time and theFTP
reads them as words, the value read by the FTP may be incorrect if a chain is
executing.Therefore,theFTPshouldnotattemptto write thesebyteswhile achain is
executing,sinceit cannotbe guaranteedthat the ICIS is not concurrentlymodifying
them.

UNSOLICITED tTHAIN POINTER (ADDR = 02 & 03) - The Unsolicited Chain

Pointer is used by the ICIS to indicate where the next instruction of an unsolicited chain

is located. When a new chain is to be started, this location is loaded with the address of

the first instruction of the unsolicited chain to be executed. It iriust be loaded before an

execute chain command is issued. As each chain instruction is fetched, this location is

updated to point to the next sequential instruction. The FTP can read this location at

any time. However, since the ICIS writes the locations a byte at a time and the FTP

reads them as words, the value read by the FTP may be incorrect if a chain is

executing. Consequently, the FTP should not attempt to write these bytes while a chain

is executing, since it cannot be guaranteed that the ICIS is not simultaneously

modifying them. Unsolicited chains are identical to solicited chains and can execute

any mix of instructions.

CHAIN STATUS REGISTER (ADDR = 10) - This register contains status of both the

chain and the contention logic.

7 6 5 4 3 2 1 0

Chain

Complete

Contentio

n State 1

Contentio Possessi Poll TX Data TX

n State 2 on Fail Fail

Default

CSR

Any Rcv

Fail

Any Rcv

Good

CHAIN COMPLETE (bit 7) - This bit is set whenever the current chain has

completed. "Chain complete" is defined as an ICIS transition from solicited to

unsolicited mode without the POLL bit in the Interface Command Register set.

The Chain Complete bit is reset whenever the POLL bit is changed to a one or
the ICIS transitions from the unsolicited to the solicited mode.

CONTENTION STATE (bits 6 and 5) - This is the current state of the poll

logic. The following are the possible states that can be indicated:

INACTIVE, BUS RELEASED (00) Both bits are zero whenever the ICIS

is not attempting to gain control of the network.

WAIT (01) This ICIS has been instructed to acquire the network; however,

•no POLL has completed since the request occurred.
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ATrEMPTED (10) This ICIS has entered and lost at least one POLL

sequence since being commanded to acquire the network.

POSSESSES (11) This ICIS currently has possession of the network.

POSSESSION DEFAULT (bit 4) - Indicates that the ICIS possesses the

network and detected an incoming POLL length bit on the network. This bit is

reset whenever the POLL bit in the Interface Command Register is set to zero.

POLL TX FAIL (bit 3) - Indicates that a data length bit was detected during a

Poll Sequence. This bit is reset whenever the POLL bit in the Interface

Command Register is set to zero.

DATA TX FAIL (bit 2) - Indicates that a data bit was detected at the receiver

during a command frame transmission. The chain will continue to completion.

This bit is reset whenever the POLL bit in the Interface Command Register is

set to zero. This bit can only be set during a network possession.

ANY RCV FAIL (bit 1) - Indicates that at least one response frame has been

received with a protocol error in it. It is reset whenever a new poll begins or the

ICIS transitions from the unsolicited to the solicited mode.

ANY RCV GOOD (bit 0) - Indicates that at least one response frame has been

received without a protocol error. It is reset whenever a new poll begins or the

ICIS transitions from the unsolicited to the solicited mode.

INTERFACE COMMAND REGISTER (Write Only) (ADDR = 11)- This register

contains the necessary control bits to operate the ICIS sequencer.

7

Execute

Chain

6

X Stop

Immed.

4

Poll

3 2

S ll Exec.

Unsol.

Chain

X Incr. on

Lose

EXECUTE CHAIN (bit 7) - When only the execute chain bit is set, the ICIS is

instructed to fetch and execute the instructions which start at the address stored

in the Solicited Chain Pointer. The chain will start even if a poll was neither

started nor won. If a poll is to be won before the chain is to be executed, then

bits 7, 4 and 2 must all be set to a one. The hardware will then start the polling

logic, start an unsolicited chain pointed to by the Unsolicited Chain Pointer, and

when a poll is won, automatically start the chain pointed to by the solicited

chain pointer.
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STOP IMM (bit 5) - When the Stop Immediately bit is set to a one, the

hardware turns off the ICIS. Whatever function the ICIS is performing is

terminated. This allows the FTP to stop the ICIS hardware if the ICIS is caught

in a loop or otherwise malfunctioning.

POLL (bit 4) - Whenever the POLL bit is set to a one, the logic attempts to gain

control of the network by joining the next possible poll sequence. At the end of

a chain, this bit must be reset.

SPOLL (bit 3) - Whenever the SPOLL bit is set to a one, the hardware will

immediately start to poll. The hardware will not wait for the start of a new poll

from another site or an idle condition on the network. At the end of a chain,

this bit must be reset.

EXECUTE UNSOL CHAIN (bit 2) - This bit is only recognized by the

hardware when set in conjunction with the execute chain bit, bit 7. If bits 7 and

2 are both set to a one, the hardware will execute the chain starting at the

location pointed to by the Unsolicited Chain Pointer. If an FTP desires to first

gain control of a network, it sets bits 7, 4 and 2 to a one and all others to a zero.

The hardware will then enable the polling logic, start the unsolicited chain at the

location pointed to by the Unsolicited Chain Pointer (usually an input

instruction) and when a poll is won, automatically start the chain at the location

pointed to by the Solicited Chain Pointer.

INCREMENT ON LOSE (bit 0) - This bit controls whether or not the flu'st 3

poll priority bits (the polling bits used for network contention) are incremented

automatically after each round of polling that is lost by the ICIS. The intention

is to allow a sites of equal redundancy to fairly arbitrate with each other such

that no one site always holds off another site during contentions for the

network. If this bit is not set, then no autoincrementing is enacted.

The following are valid commands used to control the ICIS:

START CHAIN WITH POLL = 94

START CHAIN WITHOUT POLL = 80

END CHAIN - 84

STOP CHAIN = 20

The END CHAIN command transitions the ICIS from solicited to unsolicited

mode. The STOP CHAIN command turns the ICIS off.
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INTERFA_SE STATUS REGISTER (Read Only) (ADDR = 11) - This register contains

status regarding the reception of unsolicited input and the stuck status of the individual

network layers.

7 6 5 4 3 2 1 0

X X X N M L STUCK UIR

STUCK STUCK STUCK

ISR

UNSOLICITED INPUT RCVD--UIR(bit 0) - Set if-any unsolicited input is

received. This bit is set when the end of that message is detected and reset

when this register is read.

STUCK (bit 1) - This bit is set to a one when any one of the three network

monitors detects a stuck condition on a layer. The stuck condition is defined as

a state in which the monitored layer signal has remained in a high position for

more than 512 microseconds.

L STUCK (bit 2) - This bit is set to a one when the network monitor for the L

layer detects a stuck condition.

M STUCK (bit 3) - This bit is set to a one when the network monitor for the M

layer detects a stuck condition.

N STUCK (bit 4) - This bit is set to a one when the network monitor for the N

layer detects a stuck condition.

TIMER LIMIT REGISTER (Write only) (ADDR = 12) - The timer limit register

contains the current value to be used to time out an instruction. A non-zero value

written to the timer limit register allows the timer to function. The timer is initialized at

the beginning of each instruction and as each incoming data byte is detected. If an

instruction does not complete or an incoming data byte is not detected in the

programmed number of microseconds, the current instruction is terminated and the next

sequential instruction started. A new value stored in the timer limit register will be

accepted when the next instruction is started or the next incoming byte is accepted

during an input instruction. The timer limit is the number of periods of the clock 2F16.

2F16 has a period of approximately 2 microseconds. The timer has a range of 2 to 512

microseconds.
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POLL ID REGISTER (Write only) (ADDR = 13) - The Poll ID register contains the

six (6) low order bits used in the polling procedure. These bits normally contain the

address that this ICIS uses for polling. It can be written to by the FTP or by a MOVE

instruction within the chain.

7

X X

5 4 3 2

Bit 5 Bit 4 Bit 3 Bit 2

MSB

PPR

1 0

Bit 1 Bit 0

LSB

L&M NETWORK STATES (Read only) (ADDR = 13) - This register provides a

window into the current state of layers L and M as reported by the network monitor

logic that is associated with these layers. The encoding of the states of the layers is:

7 - Data

6 - Poll

5 - Wait

4 - Released

3 - Poll Detect

2 - Stuck

1 - Poll Deskew

0 - Idle

7 6 5 4 3 2 1 0

X XM State

2

M State

1

M State

0

L State

2

L State

1

L State

0

L&MSmt_

M LAYER STATE (bits 6..4) - indicates current output of M layer's Network

Monitor.

L LAYER STATE (bits 2..0) - indicates current output of L layer's Network

Monitor.
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POLL PRIORITY REGISTER (Write only) (ADDR - 14) - The Poll Priority Register

provides the user interface into the network polling mechanism. This register has bits

to enable/disable polling, to specify the redundancy level of this polling site, and to

specify the initial 3 priority bits to be used in arbitrating for network possession.

7 6 5 4 3 2 1 0

X X PRIO 2 PRIO 1 PRIO 0Enable

Poll

Triplex

Poll

Duplex

Poll

PPR

ENABLE POLL (bit 6) - This bit is the "start" bit in the polling sequence (i.e.,

the first bit sourced on the network to indicate the site is polling). If this bit is

not set, then the site will never start a poll and therefore should never obtain

network possession.

TRIPLEX POLL (bit 5) - This bit is to be set only by triplex sites. It is the

second poll bit sourced in a polling sequence. Setting this bit also causes the

polling logic to perform a vote of the incoming polling data across channels as

opposed to OR'ing this data.

DUPLEX POLL (bit 4) - This bit is to be set only by duplex sites. It is the third

poll bit sourced in a polling sequence.

PRIORITY BITS (bits 2..0) - The three bits labeled PRIO are the initial priority

of this ICIS and are used to arbitrate among network sites of equal redundancy

levels. If the arbitration is not resolved after using these three bits, then the

polling continues with the six lower order bits in the Poll ID Register. If the

IOL bit is set in the Interface Control Register, the three PRIO bits will

automatically increment after each poll sequence loss until they contain all ones

at which time incrementing is inhibited. This maximum priority is held until the

register is reloaded.
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POLL STATE AND N MONITOR (Read only) (ADDR = 14) - This register contains a

combination of information related to the current state of the Polling State Machine and

to the current layer state as reported by the N layer's network monitor. In addition,

there is a single bit of information which reports on whether the variable poll priority

values have auto-incremented to their maximum value.

7 6 5 4 3 2 1 0

Poll

State

3

Poll

State

2

Poll

State

1

Poll

State

0

Max

Priority

N State N State

2 1

Poller and N States

N State

0

POLL STATE (bits 7..4) - indicates the current state of the Polling State

Machine:

15 - Not Contending

14 - Network Possession

13 - Waiting to begin Poll

12 - Network Release Quasi-Stable

11 - Start Poll Sequence First 12 microseconds

10 - Join Poll Sequence

9 - not used

8 - Aborted from Poll

7 - not used

6 - Aborted from Network Possession

5 - not used

4 - not used

3 - Start Poll Sequence Second 12 microseconds

2 - not used

1 - not used

0 - Lost Last Polling Sequence

MAX PRIORITY (bit 3) - when set, the MAX PRIORITY bit indicates that the

three poll priority bits, the PRIO bits in the Poll Priority Register, have been

incremented to the maximum value of 7.

N LAYER STATE (bits 2..0) - indicates current output of N layer's Network

Monitor (see encodings for the L&M States Register).

TIME .(read only) (ADDR = 15) - This byte contains a value that is slaved to the

system timer. It is incremented by a 66 microsecond clock and is capable of measuring

16.830 milliseconds. It can be read by the FTP or by a MOVE instruction in the chain.

It is automatically appended to all incoming frames that complete in a valid manner.
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LOCATION 15 REGISTER (Write only) (ADDR = 15) - This register contains various

controls bits associated with the polling mechanism and the enabling of outputs onto the

network layers.

7 6 5 4 3 2 1 0

M1 M0 Poll

Enable

L

Poll

Enable

M

Poll

Enable

N

Output Output

Enable Enable

L M

LOCATION 15 REGISTER

Output

Enable

N

M1 & M0 (bits 7..6) - These two bits control the "masking" operations

performed by the voters associated with the exchange of ICIS polling states

among the redundant ICISes. The encoding of these bits are:

00- Simplex

01 - Duplex using neighbor on Right

10 - Duplex using neighbor on Left

11 - Triplex

POLL ENABLES (bits 5..3) - These bits determine whether the input from a

particular layer is included in the polling operation. A set bit will cause the

associated layer's input to be disabled with respect to the polling logic (i.e., the

poll bit is considered to be a 0). A reset bit will allow the actual incoming poll

data to be passed to the polling logic.

OUTPUT ENABLES (bits 2..0) - These bits determine whether any data (both

HDLC data and poll data) is to be sourced onto a particular network layer. A

set bit enables output; a reset bit disables output.
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CONTROL REGISTER #1 (CR1) (ADDR = 18) - Control Register 1 is used to

specify the transmitter parameters and the transmitter and receiver enables. It can be

loaded by an FTP or by a MOVE instruction in the chain. The following is extracted

from the Western Digital data sheets on the HDLC chip (WD 1935). Definitions of bit

polarity and sense have been modified to reflect what is seen by the AIPS system.

NOTE: This register must always be loaded after CR2 and/or CR3. If CR2 and/or

CR3 are ever changed, CR1 must again be reloaded after the change even if there are no

changes being made to CR 1.

7 6 5 4 3 2 1 0

ACT ACT TC 1 TC0 TCL 1 TCL0 DTR MIS

REC "IRA C

N

CRI

ACT REC (bit 7) - If the Activate Receiver bit is set to a ZERO (0), the receiver

is enabled to accept a data stream. When it is set to a ONE (1), the receiver will

ignore any frames on the network.

ACT TRAN (bit 6) - If the Activate Transmitter bit is set to a ZERO (0), the

encoder and transmitter are enabled to output onto the network. When it is set

to a ONE (1), the HDLC device will not transmit data.

TC1 and TC0 (bits 5 and 4) - The Transmit Command bits program the device

into the requested mode. In AIPS, the OUTPUT instruction will function

properly only in the data mode. These bits and the modes that they generate are
as follows:

bit 5 bit 4 MODE

1 1 data

1 0 abort

0 1 flag

FUNCTIQN

Outputs the contents of the

transmitter holding

register

Generates an abort

message (not used on

AIPS)

Transmits one flag

character (not used on

AIPS)
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0 0 FCS Generates the two CRC

bytes and a closing flag

(not used on AIPS)

TCL1 and TCL0 (bits 3 and 2) - These bits control the number of bits per

character from the transmitter. In AIPS, this has been defined as 8 bit bytes.

The definition of these bits follows:

bit 3 bit 2 BITS PER

CHARACTER

1 1 8

1 0 7

0 1 6

0 0 5

DTR (bit 1) - Data Terminal Ready is a modem signal that is not used in this

design and should be programmed to a ONE (1).

MISC OUT (bit 0) - Miscellaneous Output is a control signal not implemented

in this design and should be programmed to a ONE (1).

(_QNTROL REGISTER #2 (CR2) (ADDR = 19) - Control Register #2 specifies the

receiver parameters and other control functions as def'med below. It can be loaded by

an FTP or by a MOVE instruction in the chain. The following is extracted from the

Western Digital data sheets on the HDLC chip (WD 1935). Definitions of bit polarity

and sense have been modified to reflect what is seen by the AIPS system.

7 6 5 4

EXT ADDR EXT RCL1

CONT COMP ADDR

3 2 1 0

RCL0 LOOP SELF AUTO

TEST FLAG

CR2

EXT CONT (bit 7) - This bit extends the HDLC control field. It is not used on

AIPS and must be programmed to a ONE (1).

ADDR COMP (bit 6) - This bit enables the on-chip address comparator. If set

to a ZERO (0), the first byte after the opening flag will be compared to the byte
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storedin theAR register. If equal, the data bytes that follow will be received.

If the address compare is enabled and the address does not compare, all

following data bytes will be ignored. If the ADDR COMP bit is set to a ONE

(1), then address comparison is not performed in the chip and all bytes between

the opening and closing flag are presented to the interface. In AIPS, the ICIS

does use the address compare function.

EXT ADDR (bit 5) - This bit extends the HDLC address field. It is not used on

AIPS and must be programmed to a ONE (1).

RCL1 and RCL0 (bits 4 and 3) - These bits specify the receiver character

length. In AIPS this has been defined as 8 bit characters. The definition of

these bits is as follows:

bit 4 bit 3 BITS PER

CHARACTER

1 1 8

1 0 7

0 1 6

0 0 5

LOOP (bit 2) - Specifies HDLC loop mode, a test function, that is not

implemented in the ICIS. This bit should always be programmed to a ONE (1).

SELF TEST (bit 1) - A diagnostic mode that is not implemented in the ICIS.

This bit should always be programmed to a ONE (1).

AUTO FLAG (bit 0) - When this bit is set to a ZERO (0) and the transmitter is

enabled, the chip will issue constant flag characters between frames. The ICIS

design utilizes this function and therefore must be set to a ZERO during an

output instruction.
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CONTROL REGISTER #3 (CR3) (ADDR = 1A) This register is used to control the

number of residual bits in a transmission. It can be loaded by an FTP or by a MOVE

instruction in the chain. The following is extracted from the Western Digital data sheets

on the HDLC chip (WD 1935). Definitions of bit polarity and sense have been

modified to reflect what is seen by the AIPS system. The definitions of these bits are

as follows:

7 6 5 4 3 2 1 0

X X X X X TRES2 TRES0

CR_ ¸

TRES1

TRES 2 - 0 (bits 2, 1 and 0) - These bits define the number of residual bits to be

sent as the last character in a transmission. Messages sent to and from a NODE

must contain three (3) residual bits. The definition of these bits are as follows:

bit2 bitl bit0 RESIDUAL BITS/FRAME

1 1 1 No residual bits sent

1 1 0 1

1 0 1 2

1 0 0 3

0 1 1 4

0 1 0 5

0 0 1 6

0 0 0 7

RECEIVER HOLDING REGISTER fRHR) (ADDR = 1B) This read-only register

contains the received bytes as they are decoded from the frame. When executing an

INPUT instruction, the ICIS automatically reads this location and stores the received

characters into the specified location in the dual port memory.
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INTERRUPT REGISTER (IR) (ADDR = 1C) This read-only register contains status

information on the state of the HDLC operation. It can be read by the b'TP or with a

MOVE instruction within a chain. Bits 7 through 3 will accumulate information such

that if the IR is read after several operations, it will have the "OR" of all those frames.

The following is extracted from the Western Digital data sheets on the HDLC chip (WD

1935). Definitions of bit polarity and sense have been modified to reflect what is seen

by the AIPS system. The definition of the bits within this register is as follows:

7

Reom

NO Error

6 5 4 3 2 1 0

DISCReom

with

Error

Xmit No

Error

Xmit

with

Urun

IR

DRQI " DRQO IrZrRQ

REOM NO ERR (bit 7) - When equal to a ZERO, this bit indicates that the

frame was received without errors. If this bit is read before the closing flag is

detected, it will not have been updated from the last frame.

REOM WITH ERR (bit 6) - When equal to a ZERO, this bit indicates that the

frame was received with errors. If this bit is read before the closing flag is

detected, it will not have been updated from the last frame. The errors that are

reported are: CRC, overrun, invalid frame, and aborted frame.

XMIT NO ERR (bit 5) - When equal to ZERO, this bit indicates that the

transmitted frame had completed without underrun errors.

XM1T WITH URUN (bit 4) - When equal to ZERO, this bit indicates that the

transmitted frame had extra bytes inserted by the chip because the data was not

available to the transmitter in the allotted time.

DISC (bit 3) - This bit is used with modems and, in this system, it has no

meaning.

DRQI (bit 2) - When set to a ZERO, this bit indicates that there is a byte

available in the Receiver Holding Register (RHR). Reading the RHR sets this

bit to a ONE. The hardware uses a buffered copy of this bit when storing bytes

into dual port memory during an INPUT instruction.

DRQO (bit 1) - When set to a ZERO, this bit indicates that the Transmit

Holding Register (THR) is empty and requires another character to prevent an

underrun error. Storing a byte into the THR sets this bit to a ONE. The

hardware Uses a buffered copy of this bit during an OUTPUT instruction to

read a byte from the dual port memory and store it into the THR.
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INTRQ (bit 0) - Thisbit is setto aZEROwheneveratleastoneof theotherbits
in theIR registeris setto aZERO. Thisbit is setto a ONE whenevertheIR is
read. A bufferedcopyof this bit is usedto terminatea normally completing
input or outputinstruction.

ADDRESS REGISTER (AR_ (ADDR =IB) - This write-only register contains the

address that the chip is to use for comparison if on-chip address recognition is being

used. If on-chip address detection is not used, the contents of this register will be

ignored. "

TRANSMIT HOLDING REGISTER (THR) (ADDR - 1C) - This write-only register

holds the next data byte to be transmitted. The hardware loads a byte into this register

during an OUTPUT instruction whenever DRQO is set.

STATUS REGISTER (SR) (ADDR -- 1D) - This read-only register contains status

information that, when used in conjunction with the contents of the Interrupt Register,

define the cause of the error.

7 6 5 4 3 2 1 0

RI O_ DSR MISC. RCVR

IN IDLE

RRES2

/ERR

RRES1

/ERR

SR

RRES0

/ERR

RI (bit 7) - A modem signal not implemented in this interface.

CD (bit 6) - A modem signal not implemented in this interface.

DSR (bit 5) - A modem signal not implemented in this interface.

MISC IN (bit 4) - An input discrete not used in this interface.

RCVR IDLE (bit 3) - When set to a ZERO, the receiver is idle, i.e. a frame is

not in process.

RRES2/ERR (bit 2) - This bit has a dual role. If bit 7 in the Interrupt Register

is a ZERO, then this bit is part of a binary number representing the number of

residual bits received (see encoding after RRES0/ERR description). If bit 6 in

the Interrupt Register is set to a ZERO and this bit is set to ZERO, then an

aborted or invalid frame was detected.
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RRES1/ERR (bit 1) - This bit hasadualrole. If bit 7 in theInterruptRegister
is aZERO,then thisbit is partof a binarynumberrepresentingthe numberof
residualbitsreceived(seeencodingafter RRES0/ERRdescription). If bit 6 in
the Interrupt Registeris setto a ZERO andthis bit is setto ZERO, thenan
overrunerrorwasdetected.An overrunerrorindicatesthatareceivedbytewas
not removedfrom the ReceiverHolding Registerbefore the next byte was
received.In anoverruncondition,thatfast byteis lost.

RRES0/ERR(bit 0) - This bit hasadual role. If bit 7 in theInterruptRegister
is a ZERO, then this bit is part of a binary number (seeencodingbelow)
representingthe numberof residual bits received. If bit 6 in the Interrupt
Registeris setto a ZEROandthis bit is set to ZERO, thena CRC error was
detected.

bit2 bitl bit0 RESIDUALBITS/FRAME

1 1 1 Noresidualbits sent
1 1 0 1
1 0 1 2
1 0 0 3
0 1 1 4
0 1 0 5
0 0 1 6
0 0 0 7
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APPENDIX D: PROPOSED MODIFICATIONS TO ICCS

This appendix describes modifications that should be made to the ICCS Transport Layer.

The first eight modifications are functional improvements and the last modification is for

performance improvement.

1. Use One Output Queue Rather than Two

Currently output messages from CP users go into one queue while those from IOP

users go into another queue. Therefore messages are not necessarily sent by the GPC in

the same order in which they were generated (although they are sent in the order in which

they were generated by a particular task or by a particular processor). Using a common

queue for both processors would ensure that messages are sent in the correct order, in

addition to simplifying the code.

2. Specify Additional Parameter for Output Messages

An additional parameter to the Send_Output routine should be implemented. This

parameter would be a boolean "hold flag" that indicates whether or not a message should be

put on the pending list if it cannot be sent immediately (because a destination GPC is

already receiving its maximum messages). In the case of a broadcast it would, (by

extension), indicate that the message should or should not be sent if it can't be sent in

broadcast mode.

A "NO" value for this parameter (indicating messages should not be held, i.e., not

put on the pending list) would be appropriate for periodic tasks sending messages at high

rates. It would also be appropriate for broadcasts where it is important that the message

arrive at all GPCs at the same time (although it still would "arrive" at the local GPC at a

different time). A "YES" value for this parameter would be appropriate for one-time

messages that must be sent and for which some delay in transmission is tolerable.

3. Restrict Length of Broadcast Messages

Broadcast messages should not be allowed to be longer than 104 bytes (i.e., what

will fit into one packe0. Messages longer than this are not sent in broadcast mode after the

f'LrSt packet anyway, and such a restriction would allow some performance improvements

to be made (see item 9). A user with a message longer than .104 bytes could either divide it

into two messages and do two separate transmissions, or execute a loop to send it to each

GPC separately.
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4. Check Message Size Against Buffer Size

When messages are moved into the temporary input or output buffers, a check

should be made to verify that the buffer is big enough to hold the message. Similarly when

a user calls the GET_INPUT routine, he should also pass the size of the area that the

message is to be moved into, so it can be verified that the message is not bigger than this

area.

5. Code and Test Use of New Scheduler Option for Overruns

As described in Section 4, the Message Send-Receive task is started by an event,

which cart be set either by the ICIS RM task when there are input packets to process or by

User Services when a user has a message to send. Every time the task is scheduled,

however, it checks its entire list of possible things to be done and continues to check as

long as it has handled a new message during any particular iteration. It is possible,

however, that its event could be set after it made its last check but before it got to its

WAIT_FOR_SCHEDULE point. The original version of the Ada run-time Scheduler

would have marked this as an overrun and not scheduled the task when it did get to its

WAIT_FOR_SCHEDULE.

The SCHEDULE routine has been modified to allow a new parameter which

specifies whether or not a task is to be scheduled after an overrun occurs. The Message

Send-Receive task needs to be changed to use this option; then it must be tested.

6. Schedule Message Send-Receive Task Periodically to Check for Timeouts

The Message Send-Receive task is started by an event, as described in 5 above.

Along with processing input and output messages, it checks every so often to see if any

messages have timed out, i.e., an output message has not received an ACK or a multi-

packet input message has not received a MSG_CONT. If the task were not triggered by the

event, however, i.e., no new messages were being generated, this task would not run and

therefore would not check for fimeouts. The task also needs to be scheduled on a periodic

basis as well as on an event basis, yet without doing unnecessary context switching. The

solution to this problem needs to be designed as well as coded and tested.
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7. Validate Message Destination in User Services Rather than Message Send-Receive

When the Message Send-Receive task triesto send an output message, itfn'st

verifiesthatthe destinationtaskisidentifiedin eitherthe CP Task Location Table or the

IOP Task Location Table. Ifitisnot,itmakes an entryinthe IC ErrorLog and ignoresthe

message. This verificationshould bc done by the SEND_OUTPUT routineand an error

indication returned to the caller.

. ValidateControlInformationin Incoming Messages

The controlinformationin incoming messages (i.e.,destinationtask,source task,

message length,etc.)should bc validatedbefore attempting to use it. Some types will

cause exceptionswhen they containinvaliddata,but otherswillnot,e.g.,message length

which isdef'medas a short_integer.

9. EliminateMessage StatusBlock Data Strucun_

In order to improve performance, the information kept in this structure could

instead be kept in the temporary input and output buffers. Keeping it in these buffers

would be greatly simplified if broadcast messages were limited to 104 bytes (see item 3).

Not having to dynamically allocate the Message Status Block, maintain a linked list, and

deallocate the block would save several milliseconds and even more in the case of a

broadcast message where a separate block is allocated for each receiving GPC. This

would, of course, increase the amount of memory required for the buffers.
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